放射科学的机器智能:放射研究学会第67届年会研讨会总结。
Machine intelligence for radiation science: summary of the Radiation Research Society 67th annual meeting symposium.
发表日期:2023 Feb 06
作者:
Lydia J Wilson, Frederico C Kiffer, Daniel C Berrios, Abigail Bryce-Atkinson, Sylvain V Costes, Olivier Gevaert, Bruno F E Matarèse, Jack Miller, Pritam Mukherjee, Kristen Peach, Paul N Schofield, Luke T Slater, Britta Langen
来源:
INTERNATIONAL JOURNAL OF RADIATION BIOLOGY
摘要:
高通量技术时代在医疗领域和研究学科中创造了大数据。机器智能(MI)方法可以克服那些大规模数据集如何被处理、分析和解释的关键限制。第67届辐射研究学会年会举办了一场关于MI方法的研讨会,以突出辐射科学及其临床应用的最新进展。本文总结了其中的三个报告,涉及元数据处理和本体形式化的最新发展、儿科肿瘤辐射治疗结果的数据挖掘以及肺癌成像。
The era of high-throughput techniques created big data in the medical field and research disciplines. Machine intelligence (MI) approaches can overcome critical limitations on how those large-scale data sets are processed, analyzed, and interpreted. The 67th Annual Meeting of the Radiation Research Society featured a symposium on MI approaches to highlight recent advancements in the radiation sciences and their clinical applications. This article summarizes three of those presentations regarding recent developments for metadata processing and ontological formalization, data mining for radiation outcomes in pediatric oncology, and imaging in lung cancer.