研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

泛癌症分析的蛋白基因组数据和资源。

Proteogenomic data and resources for pan-cancer analysis.

发表日期:2023 Aug 14
作者: Yize Li, Yongchao Dou, Felipe Da Veiga Leprevost, Yifat Geffen, Anna P Calinawan, François Aguet, Yo Akiyama, Shankara Anand, Chet Birger, Song Cao, Rekha Chaudhary, Padmini Chilappagari, Marcin Cieslik, Antonio Colaprico, Daniel Cui Zhou, Corbin Day, Marcin J Domagalski, Myvizhi Esai Selvan, David Fenyö, Steven M Foltz, Alicia Francis, Tania Gonzalez-Robles, Zeynep H Gümüş, David Heiman, Michael Holck, Runyu Hong, Yingwei Hu, Eric J Jaehnig, Jiayi Ji, Wen Jiang, Lizabeth Katsnelson, Karen A Ketchum, Robert J Klein, Jonathan T Lei, Wen-Wei Liang, Yuxing Liao, Caleb M Lindgren, Weiping Ma, Lei Ma, Michael J MacCoss, Fernanda Martins Rodrigues, Wilson McKerrow, Ngoc Nguyen, Robert Oldroyd, Alexander Pilozzi, Pietro Pugliese, Boris Reva, Paul Rudnick, Kelly V Ruggles, Dmitry Rykunov, Sara R Savage, Michael Schnaubelt, Tobias Schraink, Zhiao Shi, Deepak Singhal, Xiaoyu Song, Erik Storrs, Nadezhda V Terekhanova, Ratna R Thangudu, Mathangi Thiagarajan, Liang-Bo Wang, Joshua M Wang, Ying Wang, Bo Wen, Yige Wu, Matthew A Wyczalkowski, Yi Xin, Lijun Yao, Xinpei Yi, Hui Zhang, Qing Zhang, Maya Zuhl, Gad Getz, Li Ding, Alexey I Nesvizhskii, Pei Wang, Ana I Robles, Bing Zhang, Samuel H Payne,
来源: CANCER CELL

摘要:

美国国家癌症研究所的临床蛋白质肿瘤分析共同体(CPTAC)从蛋白-基因组角度研究肿瘤,创建了丰富的多组学数据集,将基因组异常与癌症表型相连接。为了推动全癌症研究,我们已经为10个队列中的>1000个肿瘤生成了经过协调的基因组、转录组、蛋白质组和临床数据,为科学发现创建了一套连贯而强大的数据集。我们概述了CPTAC全癌症工作组在数据协调、数据传播和计算资源方面的努力,以帮助生物学发现。我们还讨论了多组学数据整合和分析的挑战,特别是处理核苷酸测序和质谱蛋白质组学数据的独特挑战。 Copyright © 2023 The Authors. Elsevier Inc. 版权所有。保留所有权利。
The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) investigates tumors from a proteogenomic perspective, creating rich multi-omics datasets connecting genomic aberrations to cancer phenotypes. To facilitate pan-cancer investigations, we have generated harmonized genomic, transcriptomic, proteomic, and clinical data for >1000 tumors in 10 cohorts to create a cohesive and powerful dataset for scientific discovery. We outline efforts by the CPTAC pan-cancer working group in data harmonization, data dissemination, and computational resources for aiding biological discoveries. We also discuss challenges for multi-omics data integration and analysis, specifically the unique challenges of working with both nucleotide sequencing and mass spectrometry proteomics data.Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.