研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

直肠癌需要更好的反应评估。

The Crying Need for a Better Response Assessment in Rectal Cancer.

发表日期:2023 Sep 13
作者: Samuel Amintas, Nicolas Giraud, Benjamin Fernandez, Charles Dupin, Quentin Denost, Aurelie Garant, Nora Frulio, Denis Smith, Anne Rullier, Eric Rullier, Te Vuong, Sandrine Dabernat, Véronique Vendrely
来源: Immunity & Ageing

摘要:

由于全程新辅助治疗可实现近30%的病理学完全缓解,对于直肠癌诊断患者中对新辅助治疗反应良好的患者,器官保留治疗的争议逐渐加剧。目前有两种器官保留策略可供选择:观察等待策略和包括近临床完全缓解患者的局部切除策略。一个重要问题是根据初期肿瘤分期或治疗反应评估来选择患者。尽管现代成像技术有所改善,但完全缓解的鉴定仍然具有挑战性。通过放射组学分析可能实现更好的选择,通过利用众多图像特征提供数据特征化算法。下一步是将基线和/或治疗前MRI,PET-CT和CT放射组学与患者的临床病理数据结合在机器学习(ML)预测模型中,以实现预测或预后目的。这些模型可以通过添加新的生物标志物,如循环肿瘤标志物、分子分型或病理免疫标志物来进一步改进。© 2023. 作者。
Since total neoadjuvant treatment achieves almost 30% pathologic complete response, organ preservation has been increasingly debated for good responders after neoadjuvant treatment for patients diagnosed with rectal cancer. Two organ preservation strategies are available: a watch and wait strategy and a local excision strategy including patients with a near clinical complete response. A major issue is the selection of patients according to the initial tumor staging or the response assessment. Despite modern imaging improvement, identifying complete response remains challenging. A better selection could be possible by radiomics analyses, exploiting numerous image features to feed data characterization algorithms. The subsequent step is to include baseline and/or pre-therapeutic MRI, PET-CT, and CT radiomics added to the patients' clinicopathological data, inside machine learning (ML) prediction models, with predictive or prognostic purposes. These models could be further improved by the addition of new biomarkers such as circulating tumor biomarkers, molecular profiling, or pathological immune biomarkers.© 2023. The Author(s).