研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

评估 TGF-β 预后模型对化疗反应的预测以及 FKBP1A 在肝癌中的致癌作用。

Assessing TGF-β Prognostic Model Predictions for Chemotherapy Response and Oncogenic Role of FKBP1A in Liver Cancer.

发表日期:2024 Aug 23
作者: Weimei Chen, Qinghe Que, Rongrong Zhong, Zhou Lin, Qiaolan Yi, Qingshui Wang
来源: GENES & DEVELOPMENT

摘要:

转化生长因子-β (TGF-β) 信号通路在疾病的发病机制中发挥着至关重要的作用。本研究旨在鉴定肝癌患者中差异表达的 TGF-β 相关基因,并将这些发现与临床特征和免疫特征相关联。利用 TCGA-STAD 和 LIRI-JP 队列对 TGF-β 相关基因进行综合分析基因。采用差异基因表达、功能富集、生存分析和机器学习技术来开发基于 TGF-β 相关基因特征 (TGFBRS) 的预后模型。我们基于 9 种基因的表达水平开发了肝癌的预后模型TGF-β相关基因。该模型表明,较高的 TGFBRS 值与较差的预后、较高的肿瘤分级、较晚期的病理阶段和对化疗的耐药性相关。此外,TGFBRS-High 亚型的特点是免疫抑制细胞水平升高和免疫检查点分子表达增加。使用梯度提升决策树 (GBDT) 机器学习方法,FKBP1A 基因被确定在肝癌中发挥着重要作用。值得注意的是,敲除 FKBP1A 可以在体外和体内显着抑制肝癌细胞的增殖和转移能力。我们的研究强调了 TGFBRS 在预测化疗反应和塑造肝癌肿瘤免疫微环境方面的潜力。结果确定 FKBP1A 是开发肝癌预防和治疗策略的有前途的分子靶点。我们的研究结果可能指导个性化治疗策略,以改善肝癌患者的预后。版权所有© Bentham Science Publishers;如有任何疑问,请发送电子邮件至 epub@benthamscience.net。
The Transforming Growth Factor-Beta (TGF-β) signaling pathway plays a crucial role in the pathogenesis of diseases. This study aimed to identify differentially expressed TGF-β-related genes in liver cancer patients and to correlate these findings with clinical features and immune signatures.The TCGA-STAD and LIRI-JP cohorts were utilized for a comprehensive analysis of TGF-β- related genes. Differential gene expression, functional enrichment, survival analysis, and machine learning techniques were employed to develop a prognostic model based on a TGF-β-related gene signature (TGFBRS).We developed a prognostic model for liver cancer based on the expression levels of nine TGF-β- related genes. The model indicates that higher TGFBRS values are associated with poorer prognosis, higher tumor grades, more advanced pathological stages, and resistance to chemotherapy. Additionally, the TGFBRS-High subtype was characterized by elevated levels of immune-suppressive cells and increased expression of immune checkpoint molecules. Using a Gradient Boosting Decision Tree (GBDT) machine learning approach, the FKBP1A gene was identified as playing a significant role in liver cancer. Notably, knocking down FKBP1A significantly inhibited the proliferation and metastatic capabilities of liver cancer cells both in vitro and in vivo.Our study highlights the potential of TGFBRS in predicting chemotherapy responses and in shaping the tumor immune microenvironment in liver cancer. The results identify FKBP1A as a promising molecular target for developing preventive and therapeutic strategies against liver cancer. Our findings could potentially guide personalized treatment strategies to improve the prognosis of liver cancer patients.Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.