利用深度学习从乳腺癌的基质组织学预测新辅助化疗效果。
Predicting neoadjuvant chemotherapy benefit using deep learning from stromal histology in breast cancer.
发表日期:2022 Nov 22
作者:
Fengling Li, Yongquan Yang, Yani Wei, Yuanyuan Zhao, Jing Fu, Xiuli Xiao, Zhongxi Zheng, Hong Bu
来源:
npj Breast Cancer
摘要:
新辅助化疗(NAC)是局部晚期乳腺癌的标准治疗选择。然而,并非所有患者都会从NAC中受益,有些人甚至在治疗后获得更糟糕的结果。因此,治疗受益的预测因素对指导临床决策至关重要。在这里,我们通过基于深度学习(DL)的方法研究了乳腺癌间质组织学的预测潜力,提出了肿瘤相关间质分数(TS分数)用于预测NAC的病理完全缓解(pCR),并使用多中心数据集进行了验证。 TS分数被证明是pCR的独立预测因素,它不仅表现优于基线变量和肿瘤间质浸润淋巴细胞(sTILs),而且显着改善了基线变量模型的预测性能。此外,我们发现与淋巴细胞不同,间质中的胶原蛋白和成纤维细胞可能与对NAC的反应不佳相关。 TS分数有潜力更好地分层乳腺癌患者在NAC的设置中。© 2022. 作者(们)。
Neoadjuvant chemotherapy (NAC) is a standard treatment option for locally advanced breast cancer. However, not all patients benefit from NAC; some even obtain worse outcomes after therapy. Hence, predictors of treatment benefit are crucial for guiding clinical decision-making. Here, we investigated the predictive potential of breast cancer stromal histology via a deep learning (DL)-based approach and proposed the tumor-associated stroma score (TS-score) for predicting pathological complete response (pCR) to NAC with a multicenter dataset. The TS-score was demonstrated to be an independent predictor of pCR, and it not only outperformed the baseline variables and stromal tumor-infiltrating lymphocytes (sTILs) but also significantly improved the prediction performance of the baseline variable-based model. Furthermore, we discovered that unlike lymphocytes, collagen and fibroblasts in the stroma were likely associated with a poor response to NAC. The TS-score has the potential to better stratify breast cancer patients in NAC settings.© 2022. The Author(s).