基于多参数超声结合彩色多普勒和弹性成像的线性回归评分系统以减少良性乳腺活检
Linear Regression Modeling Based Scoring System to Reduce Benign Breast Biopsies Using Multi-parametric US with Color Doppler and SWE
                    
                        DOI 原文链接
                    
                    
                    
                
                
                        
                        
                            用sci-hub下载
                        
                        
                            
                            
                    
                
                                如无法下载,请从 Sci-Hub 选择可用站点尝试。
                            
                        
                                影响因子:3.9                            
                                                        
                                分区:医学2区 / 核医学2区                            
                                                    
                            发表日期:2023 Sep                        
                        
                            作者:
                            Burcu Özdemir Demirci, Onur Buğdaycı, Gökhan Ertaş, Deniz E T Şanlı, Handan Kaya, Erkin Arıbal
                        
                                                
                            DOI:
                            10.1016/j.acra.2023.01.024
                        
                                            摘要
                        旨在开发一种简便的超声(US)评分系统,以减少良性乳腺活检。对接受剪切波弹性成像(SWE)检查的乳腺BI-RADS 4或5病变女性,在活检前记录常规超声和彩色多普勒超声(CDUS)参数,计算尺寸比(SzR=最长径/最短径)。测量或计算的SWE参数包括最小(SWVMin)和最大(SWVMax)剪切波速度,速度异质性(SWVH=SWVMax-SWVMin),速度比(SWVR=SWVMin/SWVMax)以及归一化的SWVR(SWVRn=(SWVMax-SWVMin)/SWVMin)。采用决策树分析将连续参数转换为类别变量后,进行线性回归分析。通过逐步回归拟合模型,确定最优系数,设计评分系统,并在另一中心的187例不同病例(BI-RADS 3、4、5)数据上进行验证。共分析418个病变(良性238例,恶性180例)。超声和CDUS参数表现出较差(AUC=0.592-0.696),SWE参数表现出较差至良好(AUC=0.607-0.816)诊断性能。US+CDUS和US+SWE参数的线性回归模型AUC分别为0.819和0.882。所开发的评分系统可以避免37.8%的良性病变活检,同时漏诊1.1%的恶性病例。该评分系统验证显示NPV达100%,特异性为74.6%。使用US+SWE参数的线性回归模型优于单一参数。该评分方法有望显著减少良性乳腺活检。                    
                    
                    Abstract
                        To develop a simple ultrasound (US) based scoring system to reduce benign breast biopsies.Women with BI-RADS 4 or 5 breast lesions underwent shear-wave elastography (SWE) imaging before biopsy. Standard US and color Doppler US (CDUS) parameters were recorded, and the size ratio (SzR=longest/shortest diameter) was calculated. Measured/calculated SWE parameters were minimum (SWVMin) and maximum (SWVMax) shear velocity, velocity heterogeneity (SWVH=SWVMax-SWVMin), velocity ratio (SWVR=SWVMin/SWVMax), and normalized SWVR (SWVRn=(SWVMax-SWVMin)/SWVMin). Linear regression analysis was performed by converting continuous parameters into categorical corresponding equivalents using decision tree analyses. Linear regression models were fitted using stepwise regression analysis and optimal coefficients for the predictors in the models were determined. A scoring model was devised from the results and validated using a different data set from another center consisting of 187 cases with BI-RADS 3, 4, and 5 lesions.A total of 418 lesions (238 benign, 180 malignant) were analyzed. US and CDUS parameters exhibited poor (AUC=0.592-0.696), SWE parameters exhibited poor-good (AUC=0.607-0.816) diagnostic performance in benign/malignant discrimination. Linear regression models of US+CDUS and US+SWE parameters revealed an AUC of 0.819 and 0.882, respectively. The developed scoring system could have avoided biopsy in 37.8% of benign lesions while missing 1.1% of malignant lesions. The scoring system was validated with a 100% NPV rate with a specificity of 74.6%.The linear regression model using US+SWE parameters performed better than any single parameter alone. The developed scoring method could lead to a significant decrease in benign biopsies.