基于多参数超声、彩色多普勒和SWE的线性回归建模评分系统,以减少良性乳腺活检。
Linear Regression Modeling Based Scoring System to Reduce Benign Breast Biopsies Using Multi-parametric US with Color Doppler and SWE.
发表日期:2023 Feb 16
作者:
Burcu Özdemir Demirci, Onur Buğdaycı, Gökhan Ertaş, Deniz E T Şanlı, Handan Kaya, Erkin Arıbal
来源:
ACADEMIC RADIOLOGY
摘要:
开发一种简单的超声(US)评分系统,以减少良性乳腺活检。BI-RADS 4或5型乳腺病变的女性在活检前进行剪切波弹性成像(SWE)检查。记录标准US和彩色多普勒US(CDUS)参数,并计算大小比(SzR=最长/最短直径)。测量/计算的SWE参数包括最小(SWVMin)和最大(SWVMax)剪切速度,速度异质性(SWVH=SWVMax-SWVMin),速度比(SWVR=SWVMin/SWVMax)和归一化的SWVR(SWVRn=(SWVMax-SWVMin)/SWVMin)。将连续参数转换为分类相应的等价物,并使用决策树分析进行线性回归分析。使用逐步回归分析拟合线性回归模型,并确定模型中预测变量的最优系数。根据结果设计评分模型,并使用来自另一个中心的不同数据集进行验证,该数据集包括187个BI-RADS 3、4和5型病变。分析了418个病变(238个良性和180个恶性)。US和CDUS参数在良恶性鉴别方面表现出差(AUC=0.592-0.696),SWE参数在良恶性鉴别方面表现出较好的性能(AUC=0.607-0.816)。 US + CDUS和US + SWE参数的线性回归模型的AUC分别为0.819和0.882。开发的评分系统可以避免37.8%的良性病变进行活检,同时错过了1.1%的恶性病变。该评分系统经验证具有100%的阴性预测值率和74.6%的特异性。使用US + SWE参数的线性回归模型比任何单一参数的表现都要好。开发的评分方法可以显著减少良性活检。版权所有©2023年大学放射学协会。由爱思唯尔公司出版,保留所有权利。
To develop a simple ultrasound (US) based scoring system to reduce benign breast biopsies.Women with BI-RADS 4 or 5 breast lesions underwent shear-wave elastography (SWE) imaging before biopsy. Standard US and color Doppler US (CDUS) parameters were recorded, and the size ratio (SzR=longest/shortest diameter) was calculated. Measured/calculated SWE parameters were minimum (SWVMin) and maximum (SWVMax) shear velocity, velocity heterogeneity (SWVH=SWVMax-SWVMin), velocity ratio (SWVR=SWVMin/SWVMax), and normalized SWVR (SWVRn=(SWVMax-SWVMin)/SWVMin). Linear regression analysis was performed by converting continuous parameters into categorical corresponding equivalents using decision tree analyses. Linear regression models were fitted using stepwise regression analysis and optimal coefficients for the predictors in the models were determined. A scoring model was devised from the results and validated using a different data set from another center consisting of 187 cases with BI-RADS 3, 4, and 5 lesions.A total of 418 lesions (238 benign, 180 malignant) were analyzed. US and CDUS parameters exhibited poor (AUC=0.592-0.696), SWE parameters exhibited poor-good (AUC=0.607-0.816) diagnostic performance in benign/malignant discrimination. Linear regression models of US+CDUS and US+SWE parameters revealed an AUC of 0.819 and 0.882, respectively. The developed scoring system could have avoided biopsy in 37.8% of benign lesions while missing 1.1% of malignant lesions. The scoring system was validated with a 100% NPV rate with a specificity of 74.6%.The linear regression model using US+SWE parameters performed better than any single parameter alone. The developed scoring method could lead to a significant decrease in benign biopsies.Copyright © 2023 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.