研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

Oldenlandia corymbosa的基因组、转录组和代谢组分析揭示了抗癌代谢物的生物合成和作用模式。

Genomic, transcriptomic, and metabolomic analysis of Oldenlandia corymbosa reveals the biosynthesis and mode of action of anti-cancer metabolites.

发表日期:2023 Feb 21
作者: Irene Julca, Daniela Mutwil-Anderwald, Vaishnervi Manoj, Zahra Khan, Soak Kuan Lai, Lay Kien Yang, Ing Tsyr Beh, Jerzy Dziekan, Yoon Pin Lim, Shen Kiat Lim, Yee Wen Low, Yuen In Lam, Seth Tjia, Yuguang Mu, Qiao Wen Tan, Przemyslaw Nuc, Le Min Choo, Gillian Khew, Loo Shining, Antony Kam, James P Tam, Zbynek Bozdech, Maximilian Schmidt, Bjoern Usadel, Yoganathan S/O Kanagasundaram, Saleh Alseekh, Alisdair Fernie, Hoi Yeung Li, Marek Mutwil
来源: Journal of Integrative Plant Biology

摘要:

植物积累了众多次生代谢物,构成了药物的天然资源。鸢尾科植物老丹格属(Oldenlandia)科菊(corymbosa)在传统医学中被用于治疗癌症等不同疾病。然而,该植物活性代谢物、其生物合成途径以及癌症的作用方式都是未知的。为了填补这些空白,我们将这种植物暴露在八种不同的应激条件下,并结合不同的氧卡数据收集基因表达、代谢剖面和抗癌活性。我们的结果表明,老丹格属菊叶提取物对乳腺癌细胞系具有活性,而熊果酸是导致此种效果的原因。此外,我们组装了高质量的基因组并发现了两个参与熊果酸生物合成的基因。最后,我们还揭示了熊果酸导致癌细胞有丝分裂灾难,并通过细胞热位移试验(CETSA)和反向对接确定了三个高置信度蛋白结合靶点。总的来说,这些结果构成了进一步表征老丹格属中活性代谢物生物合成的宝贵资源,而熊果酸的作用方式将使我们能够进一步开发这种有价值的化合物。本文受版权保护。保留所有权利。
Plants accumulate a vast array of secondary metabolites, which constitute a natural resource for pharmaceuticals. Oldenlandia corymbosa belongs to the Rubiaceae family, and has been used in traditional medicine to treat different diseases, including cancer. However, the active metabolites of the plant, their biosynthetic pathway and mode of action in cancer are unknown. To fill these gaps, we exposed this plant to eight different stress conditions and combined different omics data capturing gene expression, metabolic profiles and anti-cancer activity. Our results show that O. corymbosa extracts are active against breast cancer cell lines and that ursolic acid is responsible for this activity. Moreover, we assembled a high-quality genome and uncovered two genes involved in the biosynthesis of ursolic acid. Finally, we also revealed that ursolic acid causes mitotic catastrophe in cancer cells and identified three high-confidence protein binding targets by Cellular Thermal Shift Assay (CETSA) and reverse docking. Altogether, these results constitute a valuable resource to further characterize the biosynthesis of active metabolites in the Oldenlandia group, while the mode of action of ursolic acid will allow us to further develop this valuable compound. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.