研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

使用数据无关采集蛋白质组学和卵巢组织特异性光谱库预测新辅助化疗后高级别浆液性卵巢癌的耐药性。

Resistance prediction in high-grade serous ovarian carcinoma with neoadjuvant chemotherapy using data-independent acquisition proteomics and an ovarian-tissue-specific spectral library.

发表日期:2023 Feb 28
作者: Liujia Qian, Jianqing Zhu, Zhangzhi Xue, Tingting Gong, Nan Xiang, Liang Yue, Xue Cai, Wangang Gong, Junjian Wang, Rui Sun, Wenhao Jiang, Weigang Ge, He Wang, Zhiguo Zheng, Qijun Wu, Yi Zhu, Tiannan Guo
来源: Molecular Oncology

摘要:

高级别浆液性卵巢癌(HGSOC)是卵巢癌中最常见的亚型,5年生存率低于40%。 对于无法接受原发性减灭手术(PDS)的晚期HGSOC患者,建议采用新辅助化疗(NACT)后进行间隔性减灭手术(IDS)。 然而,接受此治疗的患者中约有40%的人表现出未知分子机制和可预测性的趋化耐药性。 在这里,我们建立了一个包含130,735个肽和10,696个蛋白质的高质量卵巢组织特异性光谱库,该库使用Orbitrap仪器进行分析。 与已发表的DIA泛人类光谱库(DPHL)相比,该光谱库提供了10%以上的卵巢特异性和3%以上的卵巢富集蛋白质。 然后,将该库应用于采用NACT治疗的HGSOC队列的组织样本的数据无关采集(DIA)数据分析,导致10,070个定量蛋白质,比使用DPHL多9.73%。 我们进一步通过并行反应监测(PRM)建立了一种六蛋白分类器,以有效预测IDS后进一步化疗的抗药性(对数秩和检验,p = 0.002)。该分类器通过来自独立临床中心的57名患者进行验证(p = 0.014)。因此,我们开发了一种针对蛋白组学分析的卵巢特异性光谱库,并提出了一种六蛋白分类器,该分类器可能能够预测HGSOC患者在NACT-IDS治疗后的趋化耐药性。本文受版权保护,保留所有权利。
High-grade serous ovarian carcinoma (HGSOC) is the most common subtype of ovarian cancer with 5-year survival rates below 40%. Neoadjuvant chemotherapy (NACT) followed by interval debulking surgery (IDS) is recommended for patients with advanced-stage HGSOC unsuitable for primary debulking surgery (PDS). However, about 40% of patients receiving this treatment exhibited chemoresistance of uncertain molecular mechanisms and predictability. Here, we built a high-quality ovarian-tissue-specific spectral library containing 130,735 peptides and 10,696 proteins on Orbitrap instruments. Compared to a published DIA pan-human spectral library (DPHL), this spectral library provides 10% more ovary-specific and 3% more ovary-enriched proteins. This library was then applied to analyze data-independent acquisition (DIA) data of tissue samples from an HGSOC cohort treated with NACT, leading to 10,070 quantified proteins, which is 9.73% more than that with DPHL. We further established a six-protein classifier by parallel reaction monitoring (PRM) to effectively predict the resistance to additional chemotherapy after IDS (Log-rank test, p = 0.002).The classifier was validated with 57 patients from an independent clinical center (p = 0.014). Thus, we have developed an ovary-specific spectral library for targeted proteome analysis, and propose a six-protein classifier that could potentially predicts chemoresistance in HGSOC patients after NACT-IDS treatment.This article is protected by copyright. All rights reserved.