一种基于MnO2@PD的矿化水凝胶材料,可通过原位癌细胞触发可见的机械性能、电导率和粘附性的变化。
In Situ Cancer-Cell-Triggered Visible Changes in Mechanical Properties, Electroconductivity, and Adhesiveness of a MnO2@PD-Based Mineralized Hydrogel.
发表日期:2023 Aug 07
作者:
Sunu Hangma Subba, Sung Young Park
来源:
BIOSENSORS & BIOELECTRONICS
摘要:
本研究开发了一种针对癌症的特异性多巴胺共轭富含sp2碳化聚合物点(PD)包覆的介孔MnO2(MnO2@PD)矿化水凝胶生物传感器, 提供癌症诱导下的观察到的在体荧光(FL)、电化学和力学物理性质的变化。由于谷胱甘肽(GSH)和过氧化氢(ROS)如H2O2水平的增加, 导致水凝胶中的MnO2降解, 并释放PD和恢复FL, 从而控制孔隙结构的变化并增加氢键作用, 导致生理上可见的拉伸性、粘度、肿胀行为和粘附性的变化。在GSH处理下, 基质孔隙大小从21.83 m2/g增加到36.81 m2/g, 影响系统的粘度和膨胀性。电阻分别从21.96 ± 1.16 kΩ增加到30.69 ± 2.01 kΩ和32.21 ± 2.54 kΩ, 证实了电导变化与H2O2和GSH处理的依赖关系。癌细胞(HeLa、PC-3和B16F10)体外处理通过胞内ROS和GSH通过氧化还原调控的MnO2降解实现了可调节的电化学传感性能, 而经正常细胞(CHO-K1)处理的水凝胶变化最小。与经正常细胞处理的水凝胶相比, 癌症微环境导致的水滴传感显示出3倍更高的响应。该传感器的感测能力通过干燥和湿润条件下弯曲引起的相对电阻变化得到验证。此外, 该开发的传感器与无线传感器的集成使得可以通过智能手机进行实时监测。
Herein, a cancer-specific dopamine-conjugated sp2-rich carbonized polymer dot (PD)-encapsulated mesoporous MnO2 (MnO2@PD)-mineralized hydrogel biosensor was developed that offers cancer-induced observable in situ alterations in fluorescence (FL), electrochemical, and mechanophysical properties. Cancer-triggered MnO2 degradation in the hydrogel, prompted by increased levels of glutathione (GSH) and reactive oxygen species (ROS) such as H2O2, leads to PD release and FL restoration, thereby controlling changes in the pore structure and increasing hydrogen bonding, resulting in physiologically visible alterations in mechanical stretchability, viscosity, swelling behavior, and adhesiveness. The pore size of the matrix increased from 21.83 to 36.81 m2/g upon GSH treatment, affecting the viscosity and swellability of the system. The resistance increased from 21.96 ± 1.16 to 30.69 ± 2.01 and 32.21 ± 2.54 kΩ, respectively, confirming the dependence of conductivity changes on H2O2 and GSH treatments. The in vitro treatment with cancer cells (HeLa, PC-3, and B16F10) facilitated a tunable electrochemical sensing performance via redox-mediated MnO2 breakdown by intracellular ROS and GSH, whereas hydrogels treated with normal cells (CHO-K1) showed minimal changes. Cancer-microenvironment-derived water-drop sensing showed three times higher response as compared to the normal cell-treated hydrogel. The sensing capability of the fabricated sensor was validated based on bending-induced relative resistance changes under dry and wet conditions. Moreover, the integration of the developed sensor with a wireless sensor enabled real-time monitoring with a smartphone.