研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

准确判别和预测纵隔肿块的先进生物医学成像技术。

Advanced biomedical imaging for accurate discrimination and prognostication of mediastinal masses.

发表日期:2023 Aug 12
作者: Scherwin Mahmoudi, Leon D Gruenewald, Katrin Eichler, Simon S Martin, Christian Booz, Simon Bernatz, Maximilian Lahrsow, Ibrahim Yel, Jennifer Gotta, Teodora Biciusca, Hanin Mohammed, Nicole Suarez Ziegengeist, Katerina Torgashov, Renate M Hammerstingl, Christof M Sommer, Christophe Weber, Haidara Almansour, Giuseppe Bucolo, Tommaso D'Angelo, Jan-Erik Scholtz, Tatjana Gruber-Rouh, Thomas J Vogl, Vitali Koch
来源: EUROPEAN JOURNAL OF CLINICAL INVESTIGATION

摘要:

为了探究放射学特征和双源双能量CT(DECT)参数在鉴别良性和恶性纵膈肿块以及预测患者预后方面的潜力,我们进行了这项回顾性研究。我们分析了90例(其中38例为女性,平均年龄为51±25岁)经确认的患有纵膈肿块并接受增强DECT检查的患者的数据。通过两位有丰富经验的读者对衰减、放射学特征和DECT衍生的影像参数进行了评估。我们进行了方差分析(ANOVA)和卡方统计检验以进行数据比较。采用受试者工作特征曲线分析和Cox回归检验来鉴别纵膈肿块。在这90个纵膈肿块中,49个(54%)为良性,包括胸腺增生/胸腺反弹(n=10)、纵膈炎(n=16)和胸腺瘤(n=23)的病例。其余41个(46%)病变被分类为恶性,包括淋巴瘤(n=28)、纵膈肿瘤(n=4)和胸腺癌(n=9)。良性和恶性纵膈肿块在所有DECT衍生参数(p≤.001)和来自增强DECT的38个放射学特征(p≤.044)上均存在显著差异。这些方法的组合在鉴别良性和恶性肿块方面的曲线下面积为.98(95% CI,.893-1.000;p<.001),灵敏度为100%,特异度为91%。在1800天的随访期间,结合放射学特征、DECT参数和性别的多参数模型表现出预测全因死亡的良好预测能力(c指数=.8 [95% CI,.702-.890],p<.001)。结合放射学特征和DECT衍生的影像生物标志物的多参数方法可用于准确和非侵入性地鉴别前纵膈中的良性和恶性肿块。© 2023 The Authors. European Journal of Clinical Investigation published by John Wiley & Sons Ltd on behalf of Stichting European Society for Clinical Investigation Journal Foundation.
To investigate the potential of radiomic features and dual-source dual-energy CT (DECT) parameters in differentiating between benign and malignant mediastinal masses and predicting patient outcomes.In this retrospective study, we analysed data from 90 patients (38 females, mean age 51 ± 25 years) with confirmed mediastinal masses who underwent contrast-enhanced DECT. Attenuation, radiomic features and DECT-derived imaging parameters were evaluated by two experienced readers. We performed analysis of variance (ANOVA) and Chi-square statistic tests for data comparison. Receiver operating characteristic curve analysis and Cox regression tests were used to differentiate between mediastinal masses.Of the 90 mediastinal masses, 49 (54%) were benign, including cases of thymic hyperplasia/thymic rebound (n = 10), mediastinitis (n = 16) and thymoma (n = 23). The remaining 41 (46%) lesions were classified as malignant, consisting of lymphoma (n = 28), mediastinal tumour (n = 4) and thymic carcinoma (n = 9). Significant differences were observed between benign and malignant mediastinal masses in all DECT-derived parameters (p ≤ .001) and 38 radiomic features (p ≤ .044) obtained from contrast-enhanced DECT. The combination of these methods achieved an area under the curve of .98 (95% CI, .893-1.000; p < .001) to differentiate between benign and malignant masses, with 100% sensitivity and 91% specificity. Throughout a follow-up of 1800 days, a multiparametric model incorporating radiomic features, DECT parameters and gender showed promising prognostic power in predicting all-cause mortality (c-index = .8 [95% CI, .702-.890], p < .001).A multiparametric approach combining radiomic features and DECT-derived imaging biomarkers allows for accurate and noninvasive differentiation between benign and malignant masses in the anterior mediastinum.© 2023 The Authors. European Journal of Clinical Investigation published by John Wiley & Sons Ltd on behalf of Stichting European Society for Clinical Investigation Journal Foundation.