研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

一个多尺度协同计算框架以揭示神经母细胞瘤中的新现象。

A multiscale orchestrated computational framework to reveal emergent phenomena in neuroblastoma.

发表日期:2023 Aug 01
作者: C Borau, K Y Wertheim, S Hervas-Raluy, D Sainz-DeMena, D Walker, R Chisholm, P Richmond, V Varella, M Viceconti, A Montero, E Gregori-Puigjané, J Mestres, M Kasztelnik, J M García-Aznar
来源: Comput Meth Prog Bio

摘要:

神经母细胞瘤是一种复杂而具侵袭性的儿童癌症。目前的治疗方法包括手术、化疗、放疗和干细胞移植的综合治疗。然而,由于该疾病的异质性,治疗效果存在差异。计算模型已被用于分析数据、模拟生物过程以及预测疾病进展和治疗效果。连续性癌症模型可捕捉肿瘤的整体行为,而基于代理的模型则能代表个体细胞的复杂行为,而多尺度模型则代表不同组织层面的相互作用,以提供更全面的系统理解。2018年,PRIMAGE联盟成立,旨在构建一个云端决策支持系统以应对神经母细胞瘤,其中包括一个针对个体化疾病进展模拟的多尺度模型。在这项研究中,我们开发了该多尺度模型,其中包括患者的肿瘤几何形态、细胞密度、血管生成、基因遗传以及化疗方案类型等数据,并将其整合到一个在线平台中,使用Onedata和Kubernetes技术在高性能计算集群上运行模拟。这一基础设施将使临床医生能够优化治疗方案并减少昂贵且耗时的临床试验。本文概述了该挑战性框架的模型架构、数据工作流程、假设以及所涉资源的开发情况。版权所有 © 2023 作者。由 Elsevier B.V. 出版。保留所有权利。
Neuroblastoma is a complex and aggressive type of cancer that affects children. Current treatments involve a combination of surgery, chemotherapy, radiotherapy, and stem cell transplantation. However, treatment outcomes vary due to the heterogeneous nature of the disease. Computational models have been used to analyse data, simulate biological processes, and predict disease progression and treatment outcomes. While continuum cancer models capture the overall behaviour of tumours, and agent-based models represent the complex behaviour of individual cells, multiscale models represent interactions at different organisational levels, providing a more comprehensive understanding of the system. In 2018, the PRIMAGE consortium was formed to build a cloud-based decision support system for neuroblastoma, including a multi-scale model for patient-specific simulations of disease progression. In this work we have developed this multi-scale model that includes data such as patient's tumour geometry, cellularity, vascularization, genetics and type of chemotherapy treatment, and integrated it into an online platform that runs the simulations on a high-performance computation cluster using Onedata and Kubernetes technologies. This infrastructure will allow clinicians to optimise treatment regimens and reduce the number of costly and time-consuming clinical trials. This manuscript outlines the challenging framework's model architecture, data workflow, hypothesis, and resources employed in its development.Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.