前列腺癌细胞外浸润预测模型的诊断表现:系统性回顾和荟萃分析。
Diagnostic performance of prediction models for extraprostatic extension in prostate cancer: a systematic review and meta-analysis.
发表日期:2023 Aug 22
作者:
MeiLin Zhu, JiaHao Gao, Fang Han, LongLin Yin, LuShun Zhang, Yong Yang, JiaWen Zhang
来源:
Insights into Imaging
摘要:
近几十年来,已经提出了各种用于预测前列腺癌(PCa)的前列腺外展扩张(EPE)的数学图表。我们的目标是系统评估磁共振成像(MRI)和传统临床数学图表在预测PCa中EPE的准确性。本次荟萃分析的目的是为未来研究设计提供基线总结和比较估计。我们在PubMed、Embase和Cochrane数据库中检索了截至2023年5月17日的有关PCa的EPE预测数学图表的研究。使用预测模型偏倚评估工具(PROBAST)评估了研究的偏倚风险。使用双变量随机效应模型获得敏感性和特异性的综合估计。通过元回归和亚组分析来调查异质性。总共包括48个研究,共57个列联表和20,395名患者。无论是MRI包括的数学图表还是临床数学图表,都没有观察到明显的发表偏倚。针对MRI包括的数学图表预测EPE,验证队列的汇总AUC为0.80(95% CI: 0.76, 0.83)。针对传统临床数学图表预测EPE,Partin表和Memorial Sloan Kettering Cancer Center (MSKCC)数学图表的汇总AUC分别为0.72(95% CI: 0.68, 0.76)和0.79(95% CI: 0.75, 0.82)。术前风险分层对PCa患者至关重要;无论是MRI包括的数学图表还是传统临床数学图表,都具有中等的诊断性能以预测PCa中的EPE。本研究为未来研究提供了EPE预测的基线比较值,对评估PCa患者术前风险分层非常有用。本次荟萃分析首次评估了术前MRI包括的数学图表和临床数学图表在预测PCa中的前列腺外展扩张(EPE)的诊断性能(中等AUC:0.72-0.80)。我们为EPE预测提供了基线估计,这些发现对于评估PCa患者术前风险分层非常有用。• MRI包括的数学图表和传统临床数学图表在预测EPE方面具有中等的AUC值(0.72-0.80)。• MRI结合临床数学图表可能提高MRI单独预测EPE的诊断准确性。• MSKCC数学图表对预测EPE的特异性高于Partin表。• 本次荟萃分析为未来研究提供了EPE预测数学图表的基线和比较估计。© 2023. European Society of Radiology (ESR).
In recent decades, diverse nomograms have been proposed to predict extraprostatic extension (EPE) in prostate cancer (PCa). We aimed to systematically evaluate the accuracy of MRI-inclusive nomograms and traditional clinical nomograms in predicting EPE in PCa. The purpose of this meta-analysis is to provide baseline summative and comparative estimates for future study designs.The PubMed, Embase, and Cochrane databases were searched up to May 17, 2023, to identify studies on prediction nomograms for EPE of PCa. The risk of bias in studies was assessed by using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). Summary estimates of sensitivity and specificity were obtained with bivariate random-effects model. Heterogeneity was investigated through meta-regression and subgroup analysis.Forty-eight studies with a total of 57 contingency tables and 20,395 patients were included. No significant publication bias was observed for either the MRI-inclusive nomograms or clinical nomograms. For MRI-inclusive nomograms predicting EPE, the pooled AUC of validation cohorts was 0.80 (95% CI: 0.76, 0.83). For traditional clinical nomograms predicting EPE, the pooled AUCs of the Partin table and Memorial Sloan Kettering Cancer Center (MSKCC) nomogram were 0.72 (95% CI: 0.68, 0.76) and 0.79 (95% CI: 0.75, 0.82), respectively.Preoperative risk stratification is essential for PCa patients; both MRI-inclusive nomograms and traditional clinical nomograms had moderate diagnostic performance for predicting EPE in PCa. This study provides baseline comparative values for EPE prediction for future studies which is useful for evaluating preoperative risk stratification in PCa patients.This meta-analysis firstly evaluated the diagnostic performance of preoperative MRI-inclusive nomograms and clinical nomograms for predicting extraprostatic extension (EPE) in prostate cancer (PCa) (moderate AUCs: 0.72-0.80). We provide baseline estimates for EPE prediction, these findings will be useful in assessing preoperative risk stratification of PCa patients.• MRI-inclusive nomograms and traditional clinical nomograms had moderate AUCs (0.72-0.80) for predicting EPE. • MRI combined clinical nomogram may improve diagnostic accuracy of MRI alone for EPE prediction. • MSKCC nomogram had a higher specificity than Partin table for predicting EPE. • This meta-analysis provided baseline and comparative estimates of nomograms for EPE prediction for future studies.© 2023. European Society of Radiology (ESR).