生物工程中的干细胞与生物化肽的应用:通过模拟Absent蛋白的多肽类似物抑制了计划蠕虫头部再生能力。
Stem Cell Bioengineering with Bioportides: Inhibition of Planarian Head Regeneration with Peptide Mimetics of Eyes Absent Proteins.
发表日期:2023 Jul 26
作者:
Sarah Jones, Bárbara Matos, Sarah Dennison, Margarida Fardilha, John Howl
来源:
BIOMEDICINE & PHARMACOTHERAPY
摘要:
Djeya1(RKLAFRYRRIKELYNSYR)是一种非常有效的细胞穿透肽(CPP),模拟高度保守的眼缺失(Eya)蛋白的Eya结构域(ED)的α5螺旋。本研究的目的是通过对Djeya1的生物工程模拟,使其能够有效跨越平面虫组织,减小寄生复仇虫(totipotent stem cells)及其后代在被切除的地中海S. mediterranea的头部恢复能力。通过在三个变异位点(10、13和16)上单替换螺旋形成氨基异丁酸(Aib),实现对Djeya1的分子生物技术改造,以增加螺旋形成的倾向。CD分析表明,Djeya1具有很高的螺旋结构,并且Aib替换对生物工程模拟的次级结构有微妙的影响。Aib替代的Djeya1模拟物是高效的CPP,对细胞存活或增殖没有影响。这三种肽增加了PC-3细胞的迁移,PC-3细胞是一种表达高浓度Eya的前列腺癌细胞系。其中两种肽[Aib13]Djeya1和[Aib16]Djeya1是生物便携肽(bioportides),可以延迟平面虫的头部再生。由于寄生复仇虫是平面虫中唯一能够分裂的细胞群体,这些数据表明生物便携肽技术可以直接在体内操作其他干细胞,从而消除了对基因操作的需求。
Djeya1 (RKLAFRYRRIKELYNSYR) is a very effective cell penetrating peptide (CPP) that mimics the α5 helix of the highly conserved Eya domain (ED) of eyes absent (Eya) proteins. The objective of this study was to bioengineer analogues of Djeya1 that, following effective translocation into planarian tissues, would reduce the ability of neoblasts (totipotent stem cells) and their progeny to regenerate the anterior pole in decapitated S. mediterranea. As a strategy to increase the propensity for helix formation, molecular bioengineering of Djeya1 was achieved by the mono-substitution of the helicogenic aminoisobutyric acid (Aib) at three species-variable sites: 10, 13, and 16. CD analyses indicated that Djeya1 is highly helical, and that Aib-substitution had subtle influences upon the secondary structures of bioengineered analogues. Aib-substituted Djeya1 analogues are highly efficient CPPs, devoid of influence upon cell viability or proliferation. All three peptides increase the migration of PC-3 cells, a prostate cancer line that expresses high concentrations of Eya. Two peptides, [Aib13]Djeya1 and [Aib16]Djeya1, are bioportides which delay planarian head regeneration. As neoblasts are the only cell population capable of division in planaria, these data indicate that bioportide technologies could be utilised to directly manipulate other stem cells in situ, thus negating any requirement for genetic manipulation.