研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

修正泊松回归的拟合优度检验可能在二元结果分析中产生超过 1 的拟合值。

Goodness-of-fit tests for modified Poisson regression possibly producing fitted values exceeding one in binary outcome analysis.

发表日期:2024 May 23
作者: Yasuhiro Hagiwara, Yutaka Matsuyama
来源: STATISTICAL METHODS IN MEDICAL RESEARCH

摘要:

修正泊松回归使用泊松拟似然估计方程和稳健方差来估计对数二项式回归模型中的回归参数,是估计二元结果分析中调整后风险和患病率的有用工具。尽管已经为其他二元回归开发了几种拟合优度检验,但很少有拟合优度检验可用于修正泊松回归。在本研究中,我们提出了几种修正泊松回归的拟合优度检验,包括带有经验方差的修正Hosmer-Lemeshow检验、Tsiatis检验、带有二项式方差和泊松方差的归一化皮尔逊卡方检验以及归一化残差和方格测试。原始的 Hosmer-Lemeshow 检验和二项式方差归一化 Pearson 卡方检验不适用于修正泊松回归,由于参数空间不受约束,修正泊松回归可能会产生超过 1 的拟合值。模拟研究表明,归一化残差平方和检验在 I 类错误概率和错误链接函数的功效方面表现良好。我们将所提出的拟合优度检验应用于癌症患者的横截面数据分析。我们建议将归一化残差平方和检验作为修正泊松回归中的拟合优度检验。
Modified Poisson regression, which estimates the regression parameters in the log-binomial regression model using the Poisson quasi-likelihood estimating equation and robust variance, is a useful tool for estimating the adjusted risk and prevalence ratio in binary outcome analysis. Although several goodness-of-fit tests have been developed for other binary regressions, few goodness-of-fit tests are available for modified Poisson regression. In this study, we proposed several goodness-of-fit tests for modified Poisson regression, including the modified Hosmer-Lemeshow test with empirical variance, Tsiatis test, normalized Pearson chi-square tests with binomial variance and Poisson variance, and normalized residual sum of squares test. The original Hosmer-Lemeshow test and normalized Pearson chi-square test with binomial variance are inappropriate for the modified Poisson regression, which can produce a fitted value exceeding 1 owing to the unconstrained parameter space. A simulation study revealed that the normalized residual sum of squares test performed well regarding the type I error probability and the power for a wrong link function. We applied the proposed goodness-of-fit tests to the analysis of cross-sectional data of patients with cancer. We recommend the normalized residual sum of squares test as a goodness-of-fit test in the modified Poisson regression.