微波消融数值方法中高血流量对热量分布和消融区域的影响。
Effect of high blood flow on heat distribution and ablation zone during microwave ablation-numerical approach.
发表日期:2024 May 27
作者:
Gangadhara Boregowda, Panchatcharam Mariappan
来源:
Cell Death & Disease
摘要:
对于无法接受手术的患者来说,微波消融已成为癌症治疗的可行替代方案。在此过程中,采用单槽同轴天线有效地将微波能量传递到目标组织。治疗的成功通过消融过程中产生的消融区域的数量来衡量。放置在天线附近的相当大的血管通过血管周围的对流导致热量消散。散热器效应可能导致消融不充分,从而增加局部肿瘤复发的风险。在这项研究中,我们研究了大血管引起的热量损失以及血流速度与温度分布之间的关系。计算域中考虑的是直径为 4mm、高度为 50mm、有两个分支的肝动脉。使用 3D Pennes 生物热方程、温度-时间依赖模型和细胞死亡模型分别模拟初始血流速度 0.05、0.1 和 0.16 m/s 的温度分布、局部组织收缩和消融区域。使用纳维-斯托克斯方程对温度相关的血流速度进行建模,并将流固相互作用边界视为对流边界。为了离散化,我们利用 H curl Ω $$ H\left(\operatorname{curl},\Omega \right) $$ 元素作为波传播模型,H 1 Ω $$ {H}^1\left(\Omega \右) Pennes 生物热模型的 $$ 元素,以及 H 1 Ω 3 × L 0 2 Ω $$ {\left({H}^1\left(\Omega \right)\right)}^3\times {L}_0^2\left(\Omega \right) $$ 纳维-斯托克斯方程的元素,其中 Ω $$ \Omega $$ 表示计算域。模拟结果表明,血管和血流速度对温度分布、组织收缩和消融区体积有显着影响。© 2024 John Wiley
Microwave ablation has become a viable alternative for cancer treatment for patients who cannot undergo surgery. During this procedure, a single-slot coaxial antenna is employed to effectively deliver microwave energy to the targeted tissue. The success of the treatment was measured by the amount of ablation zone created during the ablation procedure. The significantly large blood vessel placed near the antenna causes heat dissipation by convection around the blood vessel. The heat sink effect could result in insufficient ablation, raising the risk of local tumor recurrence. In this study, we investigated the heat loss due to large blood vessels and the relationship between blood velocity and temperature distribution. The hepatic artery, with a diameter of 4 mm and a height of 50 mm and two branches, is considered in the computational domain. The temperature profile, localized tissue contraction, and ablation zones were simulated for initial blood velocities 0.05, 0.1, and 0.16 m/s using the 3D Pennes bio-heat equation, temperature-time dependent model, and cell death model, respectively. Temperature-dependent blood velocity is modeled using the Navier-Stokes equation, and the fluid-solid interaction boundary is treated as a convective boundary. For discretization, we utilized H curl Ω $$ H\left(\operatorname{curl},\Omega \right) $$ elements for the wave propagation model, H 1 Ω $$ {H}^1\left(\Omega \right) $$ elements for the Pennes bio-heat model, and H 1 Ω 3 × L 0 2 Ω $$ {\left({H}^1\left(\Omega \right)\right)}^3\times {L}_0^2\left(\Omega \right) $$ elements for the Navier-Stokes equation, where Ω $$ \Omega $$ represents the computational domain. The simulated results show that blood vessels and blood velocity have a significant impact on temperature distribution, tissue contraction, and the volume of the ablation zone.© 2024 John Wiley & Sons Ltd.