揭示留兰香油纳米乳剂与甘油三酯的分子动力学、抗癌活性和稳定性。
Unveiling the Molecular Dynamics, Anticancer Activity, and Stability of Spearmint Oil Nanoemulsions with Triglycerides.
发表日期:2024 May 28
作者:
Yotsanan Weerapol, Viwan Jarerattanachat, Sontaya Limmatvapirat, Chutima Limmatvapirat, Suwisit Manmuan, Sukannika Tubtimsri
来源:
MOLECULAR PHARMACEUTICS
摘要:
尽管留兰香油(SMO)具有多种药理特性,特别是对于癌症治疗,但其低水溶性导致生物利用度差。这限制了其作为药物的应用。一种可能的解决方案是使用纳米乳液形式的 SMO,它已被证明具有抗癌作用。然而,SMO纳米乳液的形成机制仍不清楚。本研究的目的是利用分子动力学 (MD) 阐明 SMO 纳米乳液与甘油三酯(三月桂酸甘油酯、三棕榈酸甘油酯和三油酸甘油酯)和 Cremophor RH40 (PCO40) 的形成。制备了具有不同 SMO:甘油三酯比例和甘油三酯类型的纳米乳液,并分析了其抗癌活性、液滴尺寸、液滴形态和稳定性。尽管改变了基础油的类型,SMO纳米乳液仍然保留了很强的抗癌作用。 80SMO:20甘油三酯的比例产生最小的液滴(<100 nm),并且在温度循环测试后表现出优异的物理稳定性。 MD 模拟表明,PCO40 的聚氧乙烯位于水界面,稳定了蛋状层中的乳液结构。液滴大小与甘油三酯浓度相关,这与实验结果一致。除 90SMO:10 甘油三酯比例外,甘油三酯含量的降低会导致液滴尺寸减小。氢键分析确定了甘油三酯-PCO40 和香芹酮-PCO40 之间的相互作用。几何分析表明,PCO40 具有“L 状”形状,可最大化亲水界面。这些发现凸显了 MD 模拟在理解 SMO 和甘油三酯纳米乳液形成机制方面的价值。此外,在实验前使用MD模拟来选择纳米乳液,特别是精油纳米乳液的潜在成分也可能是有益的。
Although spearmint oil (SMO) has various pharmacological properties, especially for cancer treatment, its low water solubility results in poor bioavailability. This limits its application as a medicine. One possible solution is to the use of SMO in the form of nanoemulsion, which has already been shown to have anticancer effects. However, the mechanism of SMO nanoemulsion formation remains unclear. The objective of this study was to use molecular dynamics (MD) for clarifying the formation of SMO nanoemulsion with triglycerides (trilaurin, tripalmitin, and triolein) and Cremophor RH40 (PCO40). Nanoemulsions with different SMO:triglyceride ratios and triglyceride types were prepared and analyzed for anticancer activity, droplet size, droplet morphology, and stability. Despite switching the type of carrier oil, SMO nanoemulsions retained strong anticancer effects. A ratio of 80SMO:20triglycerides produced the smallest droplets (<100 nm) and exhibited excellent physical stability after a temperature cycling test. MD simulations showed that polyoxyethylenes of PCO40 are located at the water interface, stabilizing the emulsion structure in an egglike layer. Droplet size correlated with triglyceride concentration, which was consistent with the experimental findings. Decreasing triglyceride content, except for the 90SMO:10triglyceride ratio, led to a decrease in droplet sizes. Hydrogen bond analysis identified interactions between triglyceride-PCO40 and carvone-PCO40. Geometry analysis showed PCO40 had an "L-like" shape, which maximizes the hydrophilic interfaces. These findings highlight the value of MD simulations in understanding the formation mechanism of SMO and triglyceride nanoemulsions. In addition, it might also be beneficial to use MD simulations before the experiment to select the potential composition for nanoemulsions, especially essential oil nanoemulsions.