肿瘤诊断中的细菌成像。
Bacterial imaging in tumour diagnosis.
发表日期:2024 Jun
作者:
Jian Chu, Xiang Yu, Gaofei Jiang, Ye Tao, Wei Wu, Shuwen Han
来源:
Microbial Biotechnology
摘要:
一些细菌,例如大肠杆菌(E. coli)和鼠伤寒沙门氏菌(S.typhimurium),具有定位实体肿瘤的固有能力,这使其成为一个多功能平台,可以与其他工具结合使用,以改善肿瘤的诊断和治疗。在抗癌治疗中,细菌通过直接携带药物或表达外源治疗基因发挥作用。细菌成像在肿瘤诊断中的应用是一个新颖且有前景的研究领域,确实可以在治疗前评估和治疗后检测中提供动态和实时监测。不同的成像技术,包括光学技术、声学成像、磁共振成像(MRI)和核医学成像,使我们能够观察和追踪与肿瘤相关的细菌。光学成像,包括生物发光和荧光,提供高灵敏度和高分辨率成像。声学成像是一种实时、非侵入性的成像技术,具有良好的穿透深度和空间分辨率。 MRI 提供高空间分辨率和无辐射成像。核医学成像,包括正电子发射断层扫描(PET)和单光子发射计算机断层扫描(SPECT)可以提供有关细菌种群分布和动态的信息。此外,合成生物学修饰和纳米材料工程修饰策略可以提高细菌的生存能力和定位能力,同时保持其自主性和活力,从而有助于肠道细菌的可视化。然而,也存在一些挑战,例如肿瘤内细菌丰度相对较低且分布不均匀、空间数据集的高维性以及成像标记工具的局限性。综上所述,随着成像技术和纳米技术的不断发展,有望进一步对肿瘤相关细菌进行深入研究,开发新的肿瘤诊断细菌成像方法。© 2024 The Author(s).约翰·威利 (John Wiley) 出版的《微生物生物技术》
Some bacteria, such as Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium), have an inherent ability to locate solid tumours, making them a versatile platform that can be combined with other tools to improve the tumour diagnosis and treatment. In anti-cancer therapy, bacteria function by carrying drugs directly or expressing exogenous therapeutic genes. The application of bacterial imaging in tumour diagnosis, a novel and promising research area, can indeed provide dynamic and real-time monitoring in both pre-treatment assessment and post-treatment detection. Different imaging techniques, including optical technology, acoustic imaging, magnetic resonance imaging (MRI) and nuclear medicine imaging, allow us to observe and track tumour-associated bacteria. Optical imaging, including bioluminescence and fluorescence, provides high-sensitivity and high-resolution imaging. Acoustic imaging is a real-time and non-invasive imaging technique with good penetration depth and spatial resolution. MRI provides high spatial resolution and radiation-free imaging. Nuclear medicine imaging, including positron emission tomography (PET) and single photon emission computed tomography (SPECT) can provide information on the distribution and dynamics of bacterial population. Moreover, strategies of synthetic biology modification and nanomaterial engineering modification can improve the viability and localization ability of bacteria while maintaining their autonomy and vitality, thus aiding the visualization of gut bacteria. However, there are some challenges, such as the relatively low bacterial abundance and heterogeneously distribution within the tumour, the high dimensionality of spatial datasets and the limitations of imaging labeling tools. In summary, with the continuous development of imaging technology and nanotechnology, it is expected to further make in-depth study on tumour-associated bacteria and develop new bacterial imaging methods for tumour diagnosis.© 2024 The Author(s). Microbial Biotechnology published by John Wiley & Sons Ltd.