研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

WT1 突变的肾脏类器官模型揭示了足细胞发育的关键调控路径。

Kidney Organoid Modeling of WT1 Mutations Reveals Key Regulatory Paths Underlying Podocyte Development.

发表日期:2024 May 29
作者: Gang Wang, Hangdi Wu, Xiuwen Zhai, Li Zhang, Changming Zhang, Chen Cheng, Xiaodong Xu, Erzhi Gao, Xushen Xiong, Jin Zhang, Zhihong Liu
来源: Stem Cell Research & Therapy

摘要:

Wilmstumor-1(WT1)是调节足细胞发育的重要转录因子。然而,WT1在足细胞发育过程中发挥功能的表观基因组机制尚未完全阐明。在这里,生成胎儿肾脏和肾脏类器官的单细胞染色质可及性和基因表达图谱。确定了 WT1 靶向基因的功能意义,这些基因对于足细胞的发育及其结构的维持至关重要,包括调节 WNT 信号通路的 BMPER/PAX2/MAGI2、维持肌动蛋白丝组织的 MYH9 和调节细胞连接组装的 NPHS1 。为了进一步说明 WT1 介导的转录调控在足细胞发育过程中的功能重要性,培养并植入了源自 WT1 杂合错义突变患者的诱导多能干细胞 (iPSC) 的患者来源的肾脏类器官。单细胞 RNA 测序 (scRNA-seq) 和功能测定的结果证实,WT1 突变无法激活靶向基因 MAGI2、MYH9 和 NPHS1,从而导致足细胞发育延迟并对细胞结构造成损害。值得注意的是,使用 CRISPR-Cas9 基因编辑纠正患者 iPSC 中的突变可以挽救足细胞表型。总的来说,这项工作阐明了与人类足细胞发育相关的 WT1 相关表观基因组景观,并确定了 WT1 突变的致病作用。© 2024 作者。 《Advanced Science》由 Wiley‐VCH GmbH 出版。
Wilms tumor-1(WT1) is a crucial transcription factor that regulates podocyte development. However, the epigenomic mechanism underlying the function of WT1 during podocyte development has yet to be fully elucidated. Here, single-cell chromatin accessibility and gene expression maps of foetal kidneys and kidney organoids are generated. Functional implications of WT1-targeted genes, which are crucial for the development of podocytes and the maintenance of their structure, including BMPER/PAX2/MAGI2 that regulates WNT signaling pathway, MYH9 that maintains actin filament organization and NPHS1 that modulates cell junction assembly are identified. To further illustrate the functional importance of WT1-mediated transcriptional regulation during podocyte development, cultured and implanted patient-derived kidney organoids derived from the Induced Pluripotent Stem Cell (iPSCs) of a patient with a heterozygous missense mutation in WT1 are generated. Results from single-cell RNA sequencing (scRNA-seq) and functional assays confirm that the WT1 mutation leads to delays in podocyte development and causes damage to cell structures, due to its failure to activate the targeting genes MAGI2, MYH9, and NPHS1. Notably, correcting the mutation in the patient iPSCs using CRISPR-Cas9 gene editing rescues the podocyte phenotype. Collectively, this work elucidates the WT1-related epigenomic landscape with respect to human podocyte development and identifies the disease-causing role of a WT1 mutation.© 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.