徒手、患者专用器械或手术导航对于肿瘤切除后的同种异体移植重建效果更好吗?临床前合成骨研究。
Does Freehand, Patient-specific Instrumentation or Surgical Navigation Perform Better for Allograft Reconstruction After Tumor Resection? A Preclinical Synthetic Bone Study.
发表日期:2024 May 15
作者:
Harley H L Chan, Prakash Nayak, Ibrahim Alshaygy, Kenneth R Gundle, Kim Tsoi, Michael J Daly, Jonathan C Irish, Peter C Ferguson, Jay S Wunder
来源:
CLINICAL ORTHOPAEDICS AND RELATED RESEARCH
摘要:
由于复杂的几何形状,关节周围骨肿瘤的保留关节切除可能具有挑战性。肿瘤切除后关节周围骨缺损的成功重建通常采用同种异体结构移植,以保留关节。然而,实现尺寸匹配的同种异体移植物来填充缺损可能具有挑战性,因为同种异体移植物尺寸各不相同,它们并不总是与患者的解剖结构相匹配,并且切割同种异体移植物以完美贴合缺损的要求很高。(1)心理上是否存在差异徒手、患者专用仪器和手术导航方法之间的工作量? (2) 不同方法之间的一致性(与理想骨移植的偏差的定量测量)、重建过程中所用的时间以及同种异体移植重建的拟合优度的定性评估是否存在差异?七名外科医生在手术中使用了三种方法同样的顺序(徒手、患者专用仪器和手术导航)来塑造合成骨以重建标准化骨缺损。收集了美国国家航空航天局 (NASA) 心理任务负荷指数问卷和手术时间。使用成形同种异体移植物的锥束 CT 图像来测量与计算机生成的理想骨移植物模型的一致性(与理想骨移植物的偏差的定量测量)。另外六名(高级)外科医生对方式不知情,使用 10 点李克特量表对同种异体移植物与标准化肿瘤缺损的配合质量进行评分。我们使用均方根度量(以毫米为单位)测量一致性,并使用方差分析进行多对比较(p < 0.05 具有显着性)。徒手、患者特定仪器和手术导航之间的心理 NASA 总任务负荷得分没有差异技术。我们发现手术导航(2 ± 0 mm;平均值已四舍五入为整数)和患者特定仪器 (2 ± 1 mm) 之间的一致性均方根值(平均值 ± SD)没有差异,但两者均显示与徒手方法相比,有微小的改进 (3 ± 1 mm)。徒手导航与手术导航的平均差异为 1 mm(95% 置信区间 [CI] 0.5 至 1.1;p = 0.01)。对于徒手仪器与患者专用仪器,平均差异为 1 mm(95% CI -0.1 至 0.9;p = 0.02)。对于患者特异性器械与手术导航,平均差异为 0 mm(95% CI -0.5 至 0.2;p = 0.82)。在评估成形移植物的贴合度时,我们发现手术导航(中位数 [IQR] 7 [6 至 8])和患者特异性器械(中位数 6 [5 至 7.8])之间没有临床上的重要差异,尽管这两种技术比徒手技术得分更高(中位数 3 [2 至 4])。对于徒手导航与手术导航,中位数差异为 4 (p < 0.001)。对于徒手仪器与患者专用仪器,中位数差异为 3 (p < 0.001)。对于患者特异性器械与手术导航,中位数差异为 1 (p = 0.03)。徒手操作的平均程序时间为 16 ± 10 分钟,患者专用器械为 14 ± 9 分钟,手术导航技术为 24 ± 8 分钟。我们发现三种塑形方式的手术时间没有差异(徒手与患者特定器械:平均差异 2 分钟 [95% CI 0 至 7];p = 0.92;徒手与手术导航:平均差异 8 分钟 [95% CI 0]至 20];p = 0.23;患者特异性器械与手术导航:平均差异 10 分钟 [95% CI 1 至 19];基于肿瘤切除后重建标准化关节周围骨缺损的手术模拟,我们发现与基于定性贴合的患者特异性器械相比,手术导航可能有一个小优势,但这两种技术都比徒手技术提供了更好的形状移植物的一致性,以适应标准化的肿瘤切除后骨缺损。要确定这些差异是否具有临床意义,需要进一步研究。这里介绍的手术导航系统是实验室研究开发的产物,虽然尚未准备好广泛部署到临床实践,但目前正在研究手术室环境中用于患者护理。这项新技术具有学习曲线、资本成本和潜在风险。报告的初步结果基于临床前合成骨肿瘤研究,该研究并不像实际手术场景那么真实。手术导航系统是骨科和重建手术中的一项新兴技术,了解其功能和局限性对于临床实践至关重要。鉴于我们在一项针对标准化合成关节周围骨肿瘤缺陷场景的小型队列研究中的初步结果,未来的研究应包括在更现实的手术环境中使用同种异体移植物和尸体标本的不同手术场景。版权所有 © 2024 作者。由 Wolters Kluwer Health, Inc. 代表骨与关节外科医生协会出版。
Joint-sparing resection of periarticular bone tumors can be challenging because of complex geometry. Successful reconstruction of periarticular bone defects after tumor resection is often performed with structural allografts to allow for joint preservation. However, achieving a size-matched allograft to fill the defect can be challenging because allograft sizes vary, they do not always match a patient's anatomy, and cutting the allograft to perfectly fit the defect is demanding.(1) Is there a difference in mental workload among the freehand, patient-specific instrumentation, and surgical navigation approaches? (2) Is there a difference in conformance (quantitative measure of deviation from the ideal bone graft), elapsed time during reconstruction, and qualitative assessment of goodness-of-fit of the allograft reconstruction among the approaches?Seven surgeons used three modalities in the same order (freehand, patient-specific instrumentation, and surgical navigation) to fashion synthetic bone to reconstruct a standardized bone defect. National Aeronautics and Space Administration (NASA) mental task load index questionnaires and procedure time were captured. Cone-beam CT images of the shaped allografts were used to measure conformance (quantitative measure of deviation from the ideal bone graft) to a computer-generated ideal bone graft model. Six additional (senior) surgeons blinded to modality scored the quality of fit of the allografts into the standardized tumor defect using a 10-point Likert scale. We measured conformance using the root-mean-square metric in mm and used ANOVA for multipaired comparisons (p < 0.05 was significant).There was no difference in mental NASA total task load scores among the freehand, patient-specific instrumentation, and surgical navigation techniques. We found no difference in conformance root-mean-square values (mean ± SD) between surgical navigation (2 ± 0 mm; mean values have been rounded to whole numbers) and patient-specific instrumentation (2 ± 1 mm), but both showed a small improvement compared with the freehand approach (3 ± 1 mm). For freehand versus surgical navigation, the mean difference was 1 mm (95% confidence interval [CI] 0.5 to 1.1; p = 0.01). For freehand versus patient-specific instrumentation, the mean difference was 1 mm (95% CI -0.1 to 0.9; p = 0.02). For patient-specific instrumentation versus surgical navigation, the mean difference was 0 mm (95% CI -0.5 to 0.2; p = 0.82). In evaluating the goodness of fit of the shaped grafts, we found no clinically important difference between surgical navigation (median [IQR] 7 [6 to 8]) and patient-specific instrumentation (median 6 [5 to 7.8]), although both techniques had higher scores than the freehand technique did (median 3 [2 to 4]). For freehand versus surgical navigation, the difference of medians was 4 (p < 0.001). For freehand versus patient-specific instrumentation, the difference of medians was 3 (p < 0.001). For patient-specific instrumentation versus surgical navigation, the difference of medians was 1 (p = 0.03). The mean ± procedural times for freehand was 16 ± 10 minutes, patient-specific instrumentation was 14 ± 9 minutes, and surgical navigation techniques was 24 ± 8 minutes. We found no differences in procedures times across three shaping modalities (freehand versus patient-specific instrumentation: mean difference 2 minutes [95% CI 0 to 7]; p = 0.92; freehand versus surgical navigation: mean difference 8 minutes [95% CI 0 to 20]; p = 0.23; patient-specific instrumentation versus surgical navigation: mean difference 10 minutes [95% CI 1 to 19]; p = 0.12).Based on surgical simulation to reconstruct a standardized periarticular bone defect after tumor resection, we found a possible small advantage to surgical navigation over patient-specific instrumentation based on qualitative fit, but both techniques provided slightly better conformance of the shaped graft for fit into the standardized post-tumor resection bone defect than the freehand technique did. To determine whether these differences are clinically meaningful requires further study. The surgical navigation system presented here is a product of laboratory research development, and although not ready to be widely deployed for clinical practice, it is currently being used in a research operating room setting for patient care. This new technology is associated with a learning curve, capital costs, and potential risk. The reported preliminary results are based on a preclinical synthetic bone tumor study, which is not as realistic as actual surgical scenarios.Surgical navigation systems are an emerging technology in orthopaedic and reconstruction surgery, and understanding their capabilities and limitations is paramount for clinical practice. Given our preliminary findings in a small cohort study with one scenario of standardized synthetic periarticular bone tumor defects, future investigations should include different surgical scenarios using allograft and cadaveric specimens in a more realistic surgical setting.Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the Association of Bone and Joint Surgeons.