研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

使用光激活人工 DNA 无膜细胞器对生命系统中细胞命运的时空调节。

Spatiotemporal Regulation of Cell Fate in Living Systems Using Photoactivatable Artificial DNA Membraneless Organelles.

发表日期:2024 Jun 26
作者: Lili Zhang, Mei Chen, Zhiqiang Wang, Minjuan Zhong, Hong Chen, Ting Li, Linlin Wang, Zhihui Zhao, Xiao-Bing Zhang, Guoliang Ke, Yanlan Liu, Weihong Tan
来源: BIOMEDICINE & PHARMACOTHERAPY

摘要:

由液-液相分离形成的凝聚层成为研究无膜细胞器动态行为并同步促进智能结构的创建与细胞命运调控的重要仿生模型。尽管不断取得进展,但在复杂生理系统中平衡结构稳定性、多功能性和分子通讯以调节细胞命运和系统研究之间的权衡仍然具有挑战性。在此,我们提出了一种自稳定和紧固件结合的功能获得方法,以在 DNA 凝聚层的基础上创建一种具有高稳定性和受控生物活性的新型合成 DNA 无膜细胞器 (MO)。具体来说,选择通过滚环扩增(RCA)产生的长单链DNA作为支架,通过相分离组装成无膜凝聚层。有趣的是,形成的DNA MO可以招募RCA副产物和其他成分来实现自稳定、纳米级凝聚和功能编码。作为概念验证,构建了可光激活的 DNA MO,并成功用于小鼠模型中癌症的时间依赖性积累和时空管理。这项研究为合成无膜细胞器提供了新的重要见解,有助于基本理解和操纵重要的生命过程。© 2024 作者。由美国化学会出版。
Coacervates formed by liquid-liquid phase separation emerge as important biomimetic models for studying the dynamic behaviors of membraneless organelles and synchronously motivating the creation of smart architectures with the regulation of cell fate. Despite continuous progress, it remains challenging to balance the trade-offs among structural stability, versatility, and molecular communication for regulation of cell fate and systemic investigation in a complex physiological system. Herein, we present a self-stabilizing and fastener-bound gain-of-function methodology to create a new type of synthetic DNA membraneless organelle (MO) with high stability and controlled bioactivity on the basis of DNA coacervates. Specifically, long single-strand DNA generated by rolling circle amplification (RCA) is selected as the scaffold that assembles into membraneless coacervates via phase separation. Intriguingly, the as-formed DNA MO can recruit RCA byproducts and other components to achieve self-stabilization, nanoscale condensation, and function encoding. As a proof of concept, photoactivatable DNA MO is constructed and successfully employed for time-dependent accumulation and spatiotemporal management of cancer in a mouse model. This study offers new, important insights into synthetic membraneless organelles for the basic understanding and manipulation of important life processes.© 2024 The Authors. Published by American Chemical Society.