循环外泌体 MicroRNA 特征可预测晚期胃癌患者的腹膜转移。
Circulating Exosomal MicroRNA Signature Predicts Peritoneal Metastasis in Patients with Advanced Gastric Cancer.
发表日期:2024 Jun 29
作者:
Yuma Wada, Masaaki Nishi, Kozo Yoshikawa, Chie Takasu, Takuya Tokunaga, Toshihiro Nakao, Hideya Kashihara, Toshiaki Yoshimoto, Mitsuo Shimada
来源:
ANNALS OF SURGICAL ONCOLOGY
摘要:
尽管进行了根治性手术,但约一半的进展期胃癌(GC)患者会出现腹膜转移(PM),且PM患者预后较差。然而,由于分期腹腔镜检查对患者来说是一种高度侵入性的手术,因此使用液体活检鉴定 PM 对于 GC 患者可能很有用。本研究分析了两个全基因组 miRNA 表达谱数据集(GSE164174 和 TCGA)。该研究优先考虑了来自 GC 患者临床训练和验证队列的治疗前血浆样本中的生物标志物。作者开发了一个整合的外泌体 miRNA 组,并建立了一个风险分层模型,该模型与 miRNA 组和当前使用的肿瘤标志物(CEA、CA19-9、CA125 和 CA72-4 水平)相结合。综合发现工作确定了一个四-miRNA 组合在 TCGA 数据集中以极高的准确性稳健地预测了转移(曲线下面积 [AUC] 0.86)。成功建立了循环外泌体 miRNA 组,在临床训练 (AUC 0.85) 和验证 (AUC 0.86) 队列中具有显着的诊断准确性。此外,该panel的预测准确性显着优于传统临床因素(P < 0.01),并且风险分层模型显着优于panel和目前用于预测PM的临床因素(AUC 0.94;单变量:赔率)比率 [OR] 77.00 [P < 0.01];多变量 OR 57.71 [P = 0.01])。用于预测 PM 的新型风险分层模型具有作为 GC 患者液体活检测定的临床转化潜力。研究结果强调了该模型对于改善 GC 患者的选择和管理的潜在临床影响。© 2024。外科肿瘤学会。
Despite a radical operation, about half of gastric cancer (GC) patients with advanced GC experience peritoneal metastasis (PM), and the patients with PM have a poor prognosis. However, because staging laparoscopy was a highly invasive procedure for patients, identification of PM using a liquid biopsy can be useful for patients with GC.This study analyzed two genome-wide miRNA expression profiling datasets (GSE164174 and TCGA). The study prioritized biomarkers in pretreatment plasma specimens from clinical training and validation cohorts of patients with GC. The authors developed an integrated exosomal miRNA panel and established a risk-stratification model, which was combined with the miRNA panel and currently used tumor markers (CEA, CA19-9, CA125, and CA72-4 levels).The comprehensive discovery effort identified a four-miRNA panel that robustly predicted the metastasis with excellent accuracy in the TCGA dataset (area under the curve [AUC] 0.86). A circulating exosomal miRNA panel was established successfully with remarkable diagnostic accuracy in the clinical training (AUC 0.85) and validation (AUC 0.86) cohorts. Moreover, the predictive accuracy of the panel was significantly superior to that of conventional clinical factors (P < 0.01), and the risk-stratification model was dramatically superior to the panel and currently used clinical factors for predicting PM (AUC 0.94; univariate: odds ratio [OR] 77.00 [P < 0.01]; multivariate OR 57.71 [P = 0.01]).The novel risk-stratification model for predicting PM has potential for clinical translation as a liquid biopsy assay for patients with GC. The study findings highlight the potential clinical impact of the model for improved selection and management of patients with GC.© 2024. Society of Surgical Oncology.