研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

基于球形核酸的基因递送纳米平台的最新进展。

Recent advances in gene delivery nanoplatforms based on spherical nucleic acids.

发表日期:2024 Jul 01
作者: Nazila Valatabar, Fatemeh Oroojalian, Mina Kazemzadeh, Amir Ali Mokhtarzadeh, Reza Safaralizadeh, Amirhossein Sahebkar
来源: JOURNAL OF NANOBIOTECHNOLOGY

摘要:

基因治疗是缓解对药物治疗反应不佳的疾病的一种治疗选择。这种类型的疗法可以通过将核酸转移到靶细胞来纠正改变和缺陷的基因。值得注意的是,通过成功地将遗传物质传递到细胞中,可以获得理想的结果。体内基因转移策略使用两大类载体,即病毒载体和非病毒载体。这两种系统都有不同的优点和缺点,输送系统的选择取决于治疗目标和其他考虑因素。安全高效的基因转移是任何递送系统的主要特征。球形核酸 (SNA) 是基于纳米技术的基因传递系统(即非病毒载体)。它们是由空心或实心球形核心纳米颗粒组成的三维结构,该纳米颗粒通过致密且高度组织的寡核苷酸层进行功能化。 SNA 独特的结构特征赋予它们内化到各种类型的组织和细胞中的高效力、对核酸酶的高度稳定性以及能够有效穿透各种生物屏障(例如皮肤、血脑屏障和血肿瘤)。障碍)。 SNA 的毒性也可以忽略不计,并且引发的免疫反应反应也最小。在过去的二十年中,所有这些有利的理化和生物学特性使它们成为药物和核酸递送的有吸引力的载体。本文讨论了 SNA 的独特结构特性、类型以及 SNA 的优化机制。我们还关注基于 SNA 的基因传递纳米平台合成的最新进展。© 2024。作者。
Gene therapy is a therapeutic option for mitigating diseases that do not respond well to pharmacological therapy. This type of therapy allows for correcting altered and defective genes by transferring nucleic acids to target cells. Notably, achieving a desirable outcome is possible by successfully delivering genetic materials into the cell. In-vivo gene transfer strategies use two major classes of vectors, namely viral and nonviral. Both of these systems have distinct pros and cons, and the choice of a delivery system depends on therapeutic objectives and other considerations. Safe and efficient gene transfer is the main feature of any delivery system. Spherical nucleic acids (SNAs) are nanotechnology-based gene delivery systems (i.e., non-viral vectors). They are three-dimensional structures consisting of a hollow or solid spherical core nanoparticle that is functionalized with a dense and highly organized layer of oligonucleotides. The unique structural features of SNAs confer them a high potency in internalization into various types of tissue and cells, a high stability against nucleases, and efficay in penetrating through various biological barriers (such as the skin, blood-brain barrier, and blood-tumor barrier). SNAs also show negligible toxicity and trigger minimal immune response reactions. During the last two decades, all these favorable physicochemical and biological attributes have made them attractive vehicles for drug and nucleic acid delivery. This article discusses the unique structural properties, types of SNAs, and also optimization mechanisms of SNAs. We also focus on recent advances in the synthesis of gene delivery nanoplatforms based on the SNAs.© 2024. The Author(s).