稳定和加速超长螺旋通道中的二次流动以实现高通量细胞操作。
Stabilizing and Accelerating Secondary Flow in Ultralong Spiral Channel for High-Throughput Cell Manipulation.
发表日期:2024 Jul 02
作者:
Shaofei Shen, Xufang Liu, Kuohai Fan, Hanjie Bai, Xiaoping Li, Hongquan Li
来源:
Cellular & Molecular Immunology
摘要:
高效的细胞操作对于生物分析和医学诊断的众多应用至关重要。然而,二次流缺乏稳定性和强度,加上实际吞吐量范围窄,严重限制了其多样化的应用。在此,我们提出了一种创新的惯性微流体装置,该装置采用螺旋通道进行高通量细胞操作。我们的研究表明,微通道中迪安式二次流的调节可以通过几何约束来实现。在超长螺旋通道(>90 cm)中引入有序微结构可以稳定并加速不同回路之间的二次流动。因此,可以在较宽的细胞通量范围(1.73 × 108 至 1.16 × 109 个细胞/分钟)内对血细胞和在较宽的通量范围(0.5 × 106 至 5 × 107 个细胞/分钟)内的癌细胞进行有效操作。与之前报道的技术相比,我们稳定和加速二次流的工程方法为各种高通量方式下的细胞操作提供了特定的性能。这种工程化的螺旋通道在生物医学分析中很有前景,特别是当细胞需要有效聚焦于大体积液体样品时。
Efficient cell manipulation is essential for numerous applications in bioanalysis and medical diagnosis. However, the lack of stability and strength in the secondary flow, coupled with the narrow range of practical throughput, severely restricts the diverse applications. Herein, we present an innovative inertial microfluidic device that employs a spiral channel for high-throughput cell manipulation. Our investigation demonstrates that the regulation of Dean-like secondary flow in the microchannel can be achieved through geometric confinement. Introducing ordered microstructures into the ultralong spiral channel (>90 cm) stabilizes and accelerates the secondary flow among different loops. Consequently, effective manipulation of blood cells within a wide cell throughput range (1.73 × 108 to 1.16 × 109 cells/min) and cancer cells across a broad throughput range (0.5 × 106 to 5 × 107 cells/min) can be achieved. In comparison to previously reported technologies, our engineering approach of stabilizing and accelerating secondary flow offers specific performance for cell manipulation under a wide range of high-throughput manner. This engineered spiral channel would be promising in biomedical analysis, especially when cells need to be focused efficiently on large-volume liquid samples.