表面工程增强了 NIR-II 触发的基于碳化钒 MXene 的纳米平台,用于癌症治疗。
Surface Engineering Enhances Vanadium Carbide MXene-Based Nanoplatform Triggered by NIR-II for Cancer Theranostics.
发表日期:2024 Jul 05
作者:
Xiaodong Zhu, Xide Zhang, Jiahao Guo, Lei He, Fuming Wang, Zhiwen Qiu, Ang Li, Jing Zhang, Fu Gao, Wei Li
来源:
Cell Death & Disease
摘要:
尽管光热疗法在癌症治疗方面具有高组织穿透深度、选择性和非侵入性等优点,但开发具有理想光热性能和先进治疗诊断能力的 NIR-II 光热剂仍然是一个关键挑战。在此,提出了一种通用的表面改性策略,通过去除表面杂质离子和产生介孔来有效提高碳化钒MXene纳米片(L-V2C)的光热性能。随后,通过L-V2C上的表面氧化还原反应可以原位形成能够进行T1加权磁共振成像的MnOx涂层,然后进一步聚乙二醇化可以获得生理条件下稳定的纳米平台(LVM-PEG)。在NIR-II激光照射的肿瘤微环境中,LVM-PEG释放的多价Mn离子作为可逆电子站,可以消耗过量表达的谷胱甘肽并催化类芬顿反应产生·OH,导致细胞同步氧化损伤。高效的协同治疗促进免疫原性细胞死亡,改善肿瘤相关的免疫微环境和免疫调节,因此,LVM-PEG可以在多模态成像引导下表现出高精度和优异的抗癌效率。因此,本研究为二维表面策略的定制和协同治疗机制的研究提供了一种新方法,突出了基于 MXene 的材料在生物医学领域的应用。© 2024 Wiley‐VCH GmbH。
Despite the advantages of high tissue penetration depth, selectivity, and non-invasiveness of photothermal therapy for cancer treatment, developing NIR-II photothermal agents with desirable photothermal performance and advanced theranostics ability remains a key challenge. Herein, a universal surface modification strategy is proposed to effectively improve the photothermal performance of vanadium carbide MXene nanosheets (L-V2C) with the removal of surface impurity ions and generation of mesopores. Subsequently, MnOx coating capable of T1-weighted magnetic resonance imaging can be in situ formed through surface redox reaction on L-V2C, and then, stable nanoplatforms (LVM-PEG) under physiological conditions can be obtained after further PEGylation. In the tumor microenvironment irradiated by NIR-II laser, multivalent Mn ions released from LVM-PEG, as a reversible electronic station, can consume the overexpression of glutathione and catalyze a Fenton-like reaction to produce ·OH, resulting in synchronous cellular oxidative damage. Efficient synergistic therapy promotes immunogenic cell death, improving tumor-related immune microenvironment and immunomodulation, and thus, LVM-PEG can demonstrate high accuracy and excellent anticancer efficiency guided by multimodal imaging. As a result, this study provides a new approach for the customization of 2D surface strategies and the study of synergistic therapy mechanisms, highlighting the application of MXene-based materials in the biomedical field.© 2024 Wiley‐VCH GmbH.