研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

PTCOG 眼部声明:眼部质子治疗当前实践和未来发展的专家总结。

PTCOG Ocular Statement: Expert Summary of Current Practices and Future Developments in Ocular Proton Therapy.

发表日期:2024 Jul 04
作者: Jan Hrbacek, Andrzej Kacperek, Jan-Willem M Beenaker, Linda Mortimer, Andrea Denker, Alejandro Mazal, Helen A Shih, Remi Dendale, Roelf Slopsema, Jens Heufelder, Kavita K Mishra
来源: Int J Radiat Oncol

摘要:

尽管眼肿瘤很罕见,但它对患者的视力、生活质量和潜在预期寿命构成威胁。眼部质子治疗(OPT)是成功治疗这种疾病的有力工具。粒子治疗合作眼科小组 (PTCOG Ocular) 制定了一份基于证据和专家的 OPT 当前实践和未来发展的执行摘要:不同 OPT 系统的比较剂量测定和临床分析对于制定规划指南、实施最佳方案至关重要实践,并建立眼睛保护、视力和生活质量衡量标准。在选定的患者子集(例如,视盘和/或黄斑附近的肿瘤)中进行的当代前瞻性试验可能允许在不同的放射方式和光束线系统之间进行剂量测定和临床分析,以评估放射传递和半影的差异,以及由此产生的肿瘤控制、正常情况组织并发症发生率和总体临床成本效益。迄今为止,多模态成像(眼底摄影、超声等)、眼科医生评估以及夹子手术与放射计划的结合已成为成功治疗的关键。预计 3D 成像 (CT/MRI) 的使用会增加,尽管其空间分辨率可能是一个限制因素(例如,检测平坦扩散的肿瘤部分)。商业化生产的眼部治疗计划系统正在开发中,其未来的使用预计将扩大到 OPT 中心。 OPT 未来的连续性将取决于 (i) 维护和升级现有的旧式专用低能量设施,(ii) 维护大型质子治疗中心共享的、退化的光束线,以及 (iii) 开发质量足够的适应性龙门光束以维持临床锐利光束一致性的优点。选项(i)可能提供最锐利的光束,最大限度地减少对健康组织的影响,而(ii)和(iii)可能提供大量长期技术支持和开发以及引入新方法的优势。巨大的患者吞吐量以及医学物理、眼科和放射治疗之间在相互理解的基础上的密切合作对于成功的 OPT 服务至关重要。版权所有 © 2024。由 Elsevier Inc. 出版。
Although rare cancers, ocular tumors are a threat to vision, quality of life, and potentially life expectancy of a patient. Ocular proton therapy (OPT) is a powerful tool for successfully treating this disease. The Particle Therapy Co-Operative Ocular Group (PTCOG Ocular) formulated an Evidence and Expert-Based Executive Summary of Current Practices and Future Developments in OPT: Comparative dosimetric and clinical analysis with the different OPT systems is essential to set up planning guidelines, implement best practices, and establish benchmarks for eye preservation, vision, and quality of life measures. Contemporary prospective trials in select subsets of patients (e.g., tumors near the optic disc and/or macula) may allow for dosimetric and clinical analysis between different radiation modalities and beamline systems to evaluate differences in radiation delivery and penumbra, and resultant tumor control, normal tissue complication rates, and overall clinical cost-effectiveness. To date, the combination of multimodal imaging (fundus photography, ultrasound, etc.), ophthalmologist assessment, and clip surgery with radiation planning have been keys to successful treatment. Increased use of 3D imaging (CT/MRI) is anticipated although its spatial resolution might be a limiting factor (e.g., detection of flat diffuse tumor parts). Commercially produced ocular treatment planning systems are under development and their future use is expected to expand across OPT centers. Future continuity of OPT will depend on (i) maintaining and upgrading existing older dedicated low-energy facilities, (ii) maintaining shared, degraded beamlines at large proton therapy centers, and (iii) developing adapted gantry beams of sufficient quality to maintain the clinical benefits of sharp beam conformity. Option (i) potentially offers the sharpest beams, minimizing impact on healthy tissues, whilst (ii) and (iii) potentially offer the advantage of substantial long-term technical support and development as well as the introduction of new approaches. Significant patient throughputs and close cooperation between medical physics, ophthalmology, and radiotherapy, underpinned by mutual understanding, is crucial for a successful OPT service.Copyright © 2024. Published by Elsevier Inc.