血清和尿液代谢指纹图谱表征肾细胞癌的分类、早期诊断和预后。
Serum and Urine Metabolic Fingerprints Characterize Renal Cell Carcinoma for Classification, Early Diagnosis, and Prognosis.
发表日期:2024 Jul 08
作者:
Xiaoyu Xu, Yuzheng Fang, Qirui Wang, Shuanfeng Zhai, Wanshan Liu, Wanwan Liu, Ruimin Wang, Qiuqiong Deng, Juxiang Zhang, Jingli Gu, Yida Huang, Dingyitai Liang, Shouzhi Yang, Yonghui Chen, Jin Zhang, Wei Xue, Junhua Zheng, Yuning Wang, Kun Qian, Wei Zhai
来源:
Disease Models & Mechanisms
摘要:
肾细胞癌(RCC)是泌尿系统的一种重要病理学,其患病率不断增加。然而,由于肾细胞癌表现的异质性,目前的临床方法在治疗肾细胞癌方面存在局限性。代谢分析被认为是临床上首选的无创方法,它可以极大地有益于 RCC 的表征。本研究构建了纳米粒子增强激光解吸电离质谱 (NELDI MS) 来分析肾肿瘤 (n = 456) 和健康对照 (n = 200) 的代谢指纹。分类模型得出的区分肾肿瘤与健康对照的曲线下面积 (AUC) 为 0.938(95% 置信区间 (CI),0.884-0.967),区分恶性与良性肿瘤的曲线下面积 (AUC) 为 0.850(95% CI,0.821-0.915) 、RCC 亚型分类为 0.925-0.932(95% CI,0.821-0.915)。对于早期RCC亚型,测试集的平均诊断灵敏度为90.5%,特异性为91.3%。代谢生物标志物被确定为亚型诊断的潜在指标(p < 0.05)。为了验证预后性能,构建了 RCC 参与者的预测模型并实现疾病预测 (p = 0.003)。该研究为应用代谢分析工具进行 RCC 表征提供了广阔的前景。© 2024 作者。 《Advanced Science》由 Wiley‐VCH GmbH 出版。
Renal cell carcinoma (RCC) is a substantial pathology of the urinary system with a growing prevalence rate. However, current clinical methods have limitations for managing RCC due to the heterogeneity manifestations of the disease. Metabolic analyses are regarded as a preferred noninvasive approach in clinics, which can substantially benefit the characterization of RCC. This study constructs a nanoparticle-enhanced laser desorption ionization mass spectrometry (NELDI MS) to analyze metabolic fingerprints of renal tumors (n = 456) and healthy controls (n = 200). The classification models yielded the areas under curves (AUC) of 0.938 (95% confidence interval (CI), 0.884-0.967) for distinguishing renal tumors from healthy controls, 0.850 for differentiating malignant from benign tumors (95% CI, 0.821-0.915), and 0.925-0.932 for classifying subtypes of RCC (95% CI, 0.821-0.915). For the early stage of RCC subtypes, the averaged diagnostic sensitivity of 90.5% and specificity of 91.3% in the test set is achieved. Metabolic biomarkers are identified as the potential indicator for subtype diagnosis (p < 0.05). To validate the prognostic performance, a predictive model for RCC participants and achieve the prediction of disease (p = 0.003) is constructed. The study provides a promising prospect for applying metabolic analytical tools for RCC characterization.© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.