研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

调查细胞因子生物标志物对艾滋病毒发病率的影响:针对随机接受暴露前预防与对照的个体的案例研究。

Investigating the effects of cytokine biomarkers on HIV incidence: a case study for individuals randomized to pre-exposure prophylaxis vs. control.

发表日期:2024
作者: Sarah Ogutu, Mohanad Mohammed, Henry Mwambi
来源: FRONTIERS IN PUBLIC HEALTH

摘要:

了解和识别与 HIV 感染相关的免疫标记物和临床信息对于有效实施暴露前预防 (PrEP) 以预防 HIV 感染至关重要。先前对艾滋病毒发病率结果的分析主要采用比例风险(PH)模型,仅针对基线协变量进行调整。因此,迫切需要整合细胞因子生物标志物的模型,特别是作为时变协变量的模型。我们使用 Cox PH 构建了一个简单的模型来研究特定细胞因子谱在预测 HIV 总体发病率方面的影响。此外,卡普兰-迈耶曲线用于比较治疗组和安慰剂组之间的艾滋病毒发病率,同时评估总体治疗效果。利用逐步回归,我们开发了一系列 Cox PH 模型来分析 48 个纵向测量的细胞因子谱。我们考虑了细胞因子谱测量中的三种效应:平均值、差异和时间依赖性协变量。将这些效应与基线协变量相结合,探讨它们对 HIV 发病率预测因子的影响。比较使用 AIC 指标开发的 Cox PH 模型的预测性能,模型 4(具有时间依赖性细胞因子的 Cox PH 模型)优于其他模型。结果表明,细胞因子、白细胞介素(IL-2、IL-3、IL-5、IL-10、IL-16、IL-12P70 和 IL-17 α)、干细胞因子(SCF)、β 神经生长因子 (B-NGF)、肿瘤坏死因子 α (TNF-A)、干扰素 (IFN) α-2、血清干细胞生长因子 (SCG)-β、血小板衍生生长因子 (PDGF)-BB、粒细胞巨噬细胞集落刺激因子(GM-CSF)、肿瘤坏死因子相关凋亡诱导配体(TRAIL)和皮肤T细胞吸引趋化因子(CTACK)与HIV发病率显着相关。在考虑细胞因子效应时,与艾滋病毒发病率显着相关的基线预测因素包括:最年长性伴侣的年龄、入学年龄、工资、与稳定伴侣的年限、有任何其他性伴侣的性伴侣、丈夫的收入、其他收入来源、首次亮相年龄、在德班居住的年数以及过去 30 天内的性行为。总体而言,细胞因子效应的纳入增强了模型的预测性能,与安慰剂组相比,PrEP 组的 HIV 发病率降低了。版权所有 © 2024 Ogutu、Mohammed 和 Mwambi 。
Understanding and identifying the immunological markers and clinical information linked with HIV acquisition is crucial for effectively implementing Pre-Exposure Prophylaxis (PrEP) to prevent HIV acquisition. Prior analysis on HIV incidence outcomes have predominantly employed proportional hazards (PH) models, adjusting solely for baseline covariates. Therefore, models that integrate cytokine biomarkers, particularly as time-varying covariates, are sorely needed.We built a simple model using the Cox PH to investigate the impact of specific cytokine profiles in predicting the overall HIV incidence. Further, Kaplan-Meier curves were used to compare HIV incidence rates between the treatment and placebo groups while assessing the overall treatment effectiveness. Utilizing stepwise regression, we developed a series of Cox PH models to analyze 48 longitudinally measured cytokine profiles. We considered three kinds of effects in the cytokine profile measurements: average, difference, and time-dependent covariate. These effects were combined with baseline covariates to explore their influence on predictors of HIV incidence.Comparing the predictive performance of the Cox PH models developed using the AIC metric, model 4 (Cox PH model with time-dependent cytokine) outperformed the others. The results indicated that the cytokines, interleukin (IL-2, IL-3, IL-5, IL-10, IL-16, IL-12P70, and IL-17 alpha), stem cell factor (SCF), beta nerve growth factor (B-NGF), tumor necrosis factor alpha (TNF-A), interferon (IFN) alpha-2, serum stem cell growth factor (SCG)-beta, platelet-derived growth factor (PDGF)-BB, granulocyte macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), and cutaneous T-cell-attracting chemokine (CTACK) were significantly associated with HIV incidence. Baseline predictors significantly associated with HIV incidence when considering cytokine effects included: age of oldest sex partner, age at enrollment, salary, years with a stable partner, sex partner having any other sex partner, husband's income, other income source, age at debut, years lived in Durban, and sex in the last 30 days.Overall, the inclusion of cytokine effects enhanced the predictive performance of the models, and the PrEP group exhibited reduced HIV incidences compared to the placebo group.Copyright © 2024 Ogutu, Mohammed and Mwambi.