表皮生长因子受体抑制剂相关皮肤不良反应的回顾性临床研究分析。
Retrospective clinical study analysis of skin adverse reactions related to epidermal growth factor receptor inhibitors.
发表日期:2024 Jun 30
作者:
Jin-Ming Qu, Si-Jian Wen, You-Kun Lin, Hua-Xiang Lu, Kun-Qian Huang, Christoffer T Maansson, Chung-Shien Lee, Taisuke Araki
来源:
Disease Models & Mechanisms
摘要:
表皮生长因子受体抑制剂(EGFRIs)是恶性肿瘤靶向治疗的基石。虽然有效,但与 EGFRIs 相关的皮肤病不良事件 (dAE) 构成了重大挑战,由于其严重性和可能阻碍癌症治疗的连续性,通常需要停止治疗。尽管进行了广泛的研究,但这些不良事件的具体机制和预测因素仍然知之甚少,特别是在不同人群中。这种知识差距强调需要开展有针对性的研究来更好地预测和管理这些事件,提高患者的治疗效果并提高对挽救生命的治疗的依从性。这项观察性研究在广西医科大学第一附属医院进行,涵盖接受 EGFRIs 治疗的癌症患者从 2020 年到 2022 年。我们分析了临床数据,包括患者人口统计、治疗细节以及 dAE 的发生和时间。本研究采用SPSS 26.0软件进行数据分析,重点关注dAE的发生情况及其影响因素。我们使用 Kaplan-Meier 和 Cox 回归方法建立了 dAE 的预测模型,跟踪其发生情况以及对治疗连续性的影响。在对广西医科大学第一附属医院 120 名接受 EGFR 抑制剂治疗的患者进行的研究中,我们发现dAE 的患病率,84.2% 的患者经历过此类影响。最常见的表现是丘疹脓疱性皮疹,52.5%的病例表现为脓疱,57.4%的病例表现为丘疹,其次是指甲病变,占62.4%,口腔或其他粘膜溃疡占34.7%,毛发改变占26.7%。 dAE 的中位潜伏时间 (MIT) 为 5 周。我们将药物类型、种族和职业确定为影响 MIT 的统计显着风险因素(所有 P<0.05),Cox 回归模型进一步将其确定为保护因素。列线图的开发是为了评估 dAE 的风险,但值得注意的是,这些模型仅经过内部验证,现阶段缺乏外部验证数据。该研究强调了 EGFRIs 相关 dAE 的高发生率,并具有特定的皮肤病学表现癌症治疗中的重大挑战。将药物类型、种族和职业确定为 dAE 的 MIT 影响因素,为临床决策提供信息。我们的预测模型可作为评估随时间推移发生 dAE 风险的实用工具,旨在优化患者管理并减少治疗中断。2024 转化癌症研究。版权所有。
Epidermal growth factor receptor inhibitors (EGFRIs) represent a cornerstone in the targeted therapy of malignant tumors. While effective, dermatological adverse events (dAEs) associated with EGFRIs pose a significant challenge, often necessitating treatment discontinuation due to their severity and potential to impede the continuity of cancer therapy. Despite extensive research, the specific mechanisms and predictors of these adverse events remain poorly understood, particularly in diverse populations. This gap in knowledge underscores the need for targeted studies to better predict and manage these events, enhancing patient outcomes and adherence to life-saving therapies.This observational study was conducted at The First Affiliated Hospital of Guangxi Medical University, covering cancer patients treated with EGFRIs from 2020 to 2022. We analyzed clinical data including patient demographics, treatment specifics, and the development and timing of dAEs. The study employed SPSS 26.0 software for data analysis, focusing on the incidence of dAEs and factors influencing their occurrence. We used Kaplan-Meier and Cox regression methods to establish a predictive model for dAEs, tracking their onset and impact on treatment continuity.In our study of 120 patients treated with EGFR inhibitors at The First Affiliated Hospital of Guangxi Medical University, we found a high prevalence of dAEs, with 84.2% of patients experiencing such effects. The most common manifestations were papulopustular rashes, observed as pustules in 52.5% and papules in 57.4% of cases, followed by nail lesions in 62.4% of patients, oral or other mucosal ulcers in 34.7%, and hair changes in 26.7%. The median incubation time (MIT) for dAEs was 5 weeks. We identified drug type, ethnicity, and occupation as statistically significant risk factors (P<0.05 for all) that influenced the MIT, which the Cox regression model further identified as protective factors. Nomograms were developed to assess the risk of dAEs, although it is important to note that these models have only been internally validated, lacking external validation data at this stage.The study highlights the high incidence of EGFRIs-associated dAEs, with specific dermatological manifestations posing significant challenges in cancer therapy. The identification of drug type, ethnicity, and occupation as influential factors on the MIT for dAEs informs clinical decisions. Our prediction model serves as a practical tool for evaluating the risk of developing dAEs over time, aiming to optimize patient management and mitigate treatment interruptions.2024 Translational Cancer Research. All rights reserved.