基于 [18F]-FDG PET/CT 的非小细胞肺癌驱动基因突变的预测性放射基因组学建模。
Predictive [18F]-FDG PET/CT-Based Radiogenomics Modelling of Driver Gene Mutations in Non-small Cell Lung Cancer.
发表日期:2024 Jul 11
作者:
Ricarda Hinzpeter, Roshini Kulanthaivelu, Andres Kohan, Vanessa Murad, Seyed Ali Mirshahvalad, Lisa Avery, Claudia Ortega, Ur Metser, Andrew Hope, Jonathan Yeung, Micheal McInnis, Patrick Veit-Haibach
来源:
ACADEMIC RADIOLOGY
摘要:
旨在调查 [18F]-FDG PET/CT 衍生的放射组学是否可能与非小细胞肺癌 (NSCLC) 患者的驱动基因突变相关。 在这项 IRB 批准的回顾性研究中,203 名接受手术治疗的 NSCLC 患者接受了后续基因组学检查我们机构 2004 年 12 月至 2014 年 1 月期间对原发肿瘤的分析确定了这一点。其中,128 名患者(平均年龄 62.4 ± 10.8 岁;范围:35-84)接受了术前 [18F]-FDG PET/CT 作为初始分期的一部分,因此被纳入研究。 PET 和 CT 图像分割和特征提取是使用开源软件平台(LIFEx,版本 6.30,lifexsoft.org)半自动执行的。使用不同的下一代测序 (NGS) 面板的分子谱是从基于网络的资源(癌症基因组学的 cBioPortal.ca)收集的。然后建立了两个统计模型来评估 [18F]-FDG PET/CT 衍生的放射组学特征对 NSCLC 驱动基因突变的预测能力。所有肿瘤样本中超过一半 (68/128, 53%) 含有三个或更多基因突变。总体而言,55% 的肿瘤样本显示 TP53 存在突变,26% 的样本存在 KRAS 突变,17% 的样本存在 EGFR 突变。广泛的统计分析产生了中等至良好的预测能力。 TP53 的最高 Youden 指数是使用组合 PET/CT 特征 (0.70) 实现的,对于 KRAS 仅使用 PET 特征 (0.57),对于 EGFR 仅使用 CT 特征 (0.60)。我们的研究表明放射组学特征与NSCLC 中的驱动基因突变,表明使用组合的 [18F]-FDG PET/CT 衍生的放射组学特征提高了基因组图谱的预测能力。版权所有 © 2024 大学放射科医生协会。由爱思唯尔公司出版。保留所有权利。
To investigate whether [18F]-FDG PET/CT-derived radiomics may correlate with driver gene mutations in non-small cell lung cancer (NSCLC) patients.In this IRB-approved retrospective study, 203 patients with surgically treated NSCLC who underwent subsequent genomic analysis of the primary tumour at our institution between December 2004 and January 2014 were identified. Of those, 128 patients (mean age 62.4 ± 10.8 years; range: 35-84) received preoperative [18F]-FDG PET/CT as part of their initial staging and thus were included in the study. PET and CT image segmentation and feature extraction were performed semi-automatically with an open-source software platform (LIFEx, Version 6.30, lifexsoft.org). Molecular profiles using different next-generation sequencing (NGS) panels were collected from a web-based resource (cBioPortal.ca for Cancer genomics). Two statistical models were then built to evaluate the predictive ability of [18F]-FDG PET/CT-derived radiomics features for driver gene mutations in NSCLC.More than half (68/128, 53%) of all tumour samples harboured three or more gene mutations. Overall, 55% of tumour samples demonstrated a mutation in TP53, 26% of samples had alterations in KRAS and 17% in EGFR. Extensive statistical analysis resulted in moderate to good predictive ability. The highest Youden Index for TP53 was achieved using combined PET/CT features (0.70), for KRAS using PET features only (0.57) and for EGFR using CT features only (0.60).Our study demonstrated a moderate to good correlation between radiomics features and driver gene mutations in NSCLC, indicating increased predictive ability of genomic profiles using combined [18F]-FDG PET/CT-derived radiomics features.Copyright © 2024 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.