研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

使用同切片真实细胞标签推导方法训练免疫表型深度学习模型可提高虚拟染色的准确性。

Training immunophenotyping deep learning models with the same-section ground truth cell label derivation method improves virtual staining accuracy.

发表日期:2024
作者: Abu Bakr Azam, Felicia Wee, Juha P Väyrynen, Willa Wen-You Yim, Yue Zhen Xue, Bok Leong Chua, Jeffrey Chun Tatt Lim, Aditya Chidambaram Somasundaram, Daniel Shao Weng Tan, Angela Takano, Chun Yuen Chow, Li Yan Khor, Tony Kiat Hon Lim, Joe Yeong, Mai Chan Lau, Yiyu Cai
来源: MOLECULAR & CELLULAR PROTEOMICS

摘要:

深度学习 (DL) 模型预测苏木精和伊红图像中生物标志物的表达 (H
Deep learning (DL) models predicting biomarker expression in images of hematoxylin and eosin (H&E)-stained tissues can improve access to multi-marker immunophenotyping, crucial for therapeutic monitoring, biomarker discovery, and personalized treatment development. Conventionally, these models are trained on ground truth cell labels derived from IHC-stained tissue sections adjacent to H&E-stained ones, which might be less accurate than labels from the same section. Although many such DL models have been developed, the impact of ground truth cell label derivation methods on their performance has not been studied.In this study, we assess the impact of cell label derivation on H&E model performance, with CD3+ T-cells in lung cancer tissues as a proof-of-concept. We compare two Pix2Pix generative adversarial network (P2P-GAN)-based virtual staining models: one trained with cell labels obtained from the same tissue section as the H&E-stained section (the 'same-section' model) and one trained on cell labels from an adjacent tissue section (the 'serial-section' model).We show that the same-section model exhibited significantly improved prediction performance compared to the 'serial-section' model. Furthermore, the same-section model outperformed the serial-section model in stratifying lung cancer patients within a public lung cancer cohort based on survival outcomes, demonstrating its potential clinical utility.Collectively, our findings suggest that employing ground truth cell labels obtained through the same-section approach boosts immunophenotyping DL solutions.Copyright © 2024 Azam, Wee, Väyrynen, Yim, Xue, Chua, Lim, Somasundaram, Tan, Takano, Chow, Khor, Lim, Yeong, Lau and Cai.