分子分类改善了子宫内膜癌的术前风险评估。
Molecular classification improves preoperative risk assessment of endometrial cancer.
发表日期:2024 Jul 16
作者:
Silvia Cabrera, Vicente Bebia, Carlos López-Gil, Ana Luzarraga-Aznar, Melek Denizli, Lourdes Salazar-Huayna, Nihed Abdessayed, Josep Castellví, Eva Colas, Antonio Gil-Moreno
来源:
GYNECOLOGIC ONCOLOGY
摘要:
我们的目的是评估子宫内膜癌 (EC) 分子分类在单独预测初次手术后以及与术前可用的其他临床数据相结合中预测宫外疾病的表现。回顾性单中心观察性研究包括接受初次手术治疗的子宫内膜腺癌患者1994 年 12 月和 2022 年 5 月。使用 p53、MLH1、PMS2、MSH2 和 MSH6 的免疫组织化学进行分子分析;以及 POLE 基因 6 个最常见突变的 KASP 基因分型。回顾了临床、病理和影像学信息。进行了逻辑回归、回归树和随机森林分类技术 (CART)。我们入组了 658 名患者,其中 47 名患者接受 POLEmut (7.1%),234 名患者接受 MMRd (35.6%),95 名患者接受 p53abn (14.4%),282 名患者接受 NSMP (42.8)。 %) 肿瘤。 11.7% 的患者被诊断为初次手术后晚期 (III-IV FigO 2009),p53abn 肿瘤显示宫外扩散增加 (34.1%) 和淋巴结受累 (30.1%) (p < .001)。在多变量分析中,只有 p53abn 亚组(aOR = 16.0,CI95% = 1.5-165.1)和放射学怀疑宫外疾病(aOR = 24.2,CI95% = 12.2-48.2)独立预测初次手术后发现宫外疾病。对于术前患有子宫局限性疾病的患者,放射学评估中的深层肌层和宫颈受累以及 p53abn 分子亚型是分期手术后识别有隐匿性宫外疾病风险的患者的最佳变量。EC 分子分类比组织型或分级更准确术前活检可预测晚期疾病,并与影像学检查一起是最可靠的术前信息。这项工作为术前使用分子信息来定制手术治疗提供了一个初步框架。版权所有 © 2024 Elsevier Inc. 保留所有权利。
We aimed to evaluate the performance of endometrial cancer (EC) molecular classification in predicting extrauterine disease after primary surgery alone and in combination with other clinical data available in preoperative setting.Retrospective single-center observational study including patients with endometrial adenocarcinoma treated with primary surgery between December 1994 and May 2022. Molecular profiling was performed using immunohistochemistry of p53, MLH1, PMS2, MSH2 and MSH6; and KASP genotyping of the 6 most common mutations of POLE gene. Clinical, pathological and imaging information was reviewed. Logistic regression, regression trees and random forest classification techniques (CART) were performed.We enrolled 658 patients, 47 with POLEmut (7.1%), 234 with MMRd (35.6%), 95 with p53abn (14.4%) and 282 with NSMP (42.8%) tumors. Advanced stage after primary surgery (III-IV FIGO 2009) was diagnosed in 11.7% of patients, p53abn tumors showed increased extrauterine spread (34.1%) and nodal involvement (30.1%) (p < .001). In multivariate analysis, only p53abn subgroup (aOR = 16.0, CI95% = 1.5-165.1) and radiological suspicion of extrauterine disease (aOR = 24.2, CI95% = 12.2-48.2) independently predicted the finding of extrauterine disease after primary surgery. In patients with preoperative uterine-confined disease, deep myometrial and cervical involvement in radiological assessment and p53abn molecular subtype were the best variables to identify patients at-risk of occult extrauterine disease after the staging surgery.EC molecular classification is more accurate than histotype or grade in preoperative biopsy to predict advanced disease, and together with imaging tests are the most reliable preoperative information. This work provides an initial framework for using molecular information preoperatively to tailor surgical treatment.Copyright © 2024 Elsevier Inc. All rights reserved.