基于人工智能的放射组学在预测宫颈癌患者淋巴管间隙侵犯中的作用:系统评价和荟萃分析。
The role of radiomics for predicting of lymph-vascular space invasion in cervical cancer patients based on artificial intelligence: a systematic review and meta-analysis.
发表日期:2024 Jul 19
作者:
Mengli Zhao, Zhen Li, Xiaowei Gu, Xiaojing Yang, Zhongrong Gao, Shanshan Wang, Jie Fu
来源:
Journal of Gynecologic Oncology
摘要:
本研究的主要目的是对磁共振成像 (MRI) 衍生的放射组学模型所表现出的关于术前预测宫颈癌病例淋巴管间隙浸润 (LVSI) 的预后功效进行系统检查和评估。两名研究人员利用 Embase、PubMed、Web of Science 和 Cochrane 图书馆数据库的资源,对相关学术文献进行了全面、彻底的探索。这项研究的范围受到 2023 年 5 月 15 日出版截止日期的限制。纳入标准包括利用基于 MRI 的放射组学模型来预测宫颈癌病例术前 LVSI 估计准确性的研究。采用了诊断准确性研究 2 框架和放射组学质量评分指标。这项调查包括九项不同的研究,总共招募了 1,406 名患者。基于 MRI 的放射组学模型预测宫颈癌患者术前 LVSI 的诊断性能指标确定如下:敏感性为 83%(95% 置信区间 [CI]=77%-87%),特异性为 74%( 95% CI=69%-79%),汇总接收者操作特性的相应 AUC 测量值为 0.86(95% CI=0.82-0.88)。综合荟萃分析的结果并未揭示显着的异质性。该荟萃分析表明,基于 MRI 的放射组学模型在宫颈癌患者队列中预测术前 LVSI 方面具有强大的诊断能力。未来,放射组学有可能成为一种广泛适用的非侵入性方法,用于宫颈癌中 LVSI 的早期检测。© 2025。亚洲妇科肿瘤学会、韩国妇科肿瘤学会和日本妇科肿瘤学会。
The primary aim of this study was to conduct a methodical examination and assessment of the prognostic efficacy exhibited by magnetic resonance imaging (MRI)-derived radiomic models concerning the preoperative prediction of lymph-vascular space infiltration (LVSI) in cervical cancer cases. A comprehensive and thorough exploration of pertinent academic literature was undertaken by two investigators, employing the resources of the Embase, PubMed, Web of Science, and Cochrane Library databases. The scope of this research was bounded by a publication cutoff date of May 15, 2023. The inclusion criteria encompassed studies that utilized radiomic models based on MRI to prognosticate the accuracy of preoperative LVSI estimation in instances of cervical cancer. The Diagnostic Accuracy Studies-2 framework and the Radiomic Quality Score metric were employed. This investigation included nine distinct research studies, enrolling a total of 1,406 patients. The diagnostic performance metrics of MRI-based radiomic models in the prediction of preoperative LVSI among cervical cancer patients were determined as follows: sensitivity of 83% (95% confidence interval [CI]=77%-87%), specificity of 74% (95% CI=69%-79%), and a corresponding AUC of summary receiver operating characteristic measuring 0.86 (95% CI=0.82-0.88). The results of the synthesized meta-analysis did not reveal substantial heterogeneity.This meta-analysis suggests the robust diagnostic proficiency of the MRI-based radiomic model in the prognostication of preoperative LVSI within the cohort of cervical cancer patients. In the future, radiomics holds the potential to emerge as a widely applicable noninvasive modality for the early detection of LVSI in the context of cervical cancer.© 2025. Asian Society of Gynecologic Oncology, Korean Society of Gynecologic Oncology, and Japan Society of Gynecologic Oncology.