研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

CO-19 PDB 2.0:具有全球自动警报、统计分析和癌症相关性的综合性 COVID-19 数据库。

CO-19 PDB 2.0: A Comprehensive COVID-19 Database with Global Auto-Alerts, Statistical Analysis, and Cancer Correlations.

发表日期:2024 Jul 26
作者: Shahid Ullah, Yingmei Li, Wajeeha Rahman, Farhan Ullah, Muhammad Ijaz, Anees Ullah, Gulzar Ahmad, Hameed Ullah, Tianshun Gao
来源: Database-Oxford

摘要:

生物数据库是现代研究的重要基础,在不断变化的生物学领域,COVID-19 数据库已成为不可或缺的资源。 Covid-19 于 2019 年 12 月在全球爆发,需要综合数据库来揭示这种新型病毒与癌症之间的复杂联系。尽管现有数据库,但研究界仍然迫切需要一种集中且可访问的方法来获取精确信息。这项工作的主要目的是开发一个数据库,只需单击一下即可获得所有与 COVID-19 相关的数据,并具有自动全局通知功能。精心设计的 COVID-19 大流行数据库 (CO-19 PDB 2.0) 弥补了这一差距,该数据库被定位为研究人员解决 COVID-19 和癌症复杂性的综合资源。 2019 年 12 月至 2024 年 6 月期间,CO-19 PDB 2.0 系统地收集了 120 个数据集并将其组织为六个不同的类别,每个类别都满足特定的功能。这些类别包括化学结构数据库、数字图像数据库、可视化工具数据库、基因组数据库、社会科学数据库和文献数据库。功能范围从图像分析和基因序列信息到数据可视化和环境事件更新。 CO-19 PDB 2.0 可以选择数据库搜索页面或自动通知页面,从而提供无缝的信息检索。专门页面介绍了六个预定义的图表,提供了对关键标准的深入了解,例如病例数和死亡数、国家/地区分布、“新病例和康复率”以及死亡率和康复率。 COVID-19 对癌症患者的全球影响促使研究机构之间进行广泛合作,在国际期刊上发表了大量文章和计算研究。该计划的一个关键特征是标准化信息更新的每日自动通知。用户可以根据不同的类别轻松导航或使用直接搜索选项。该研究提供了最新的 COVID-19 数据集以及有关 COVID-19 和癌症的全球统计数据,重点介绍了 2022 年美国诊断出的前 10 种癌症。乳腺癌和前列腺癌是最常见的,分别占 30% 和 26%。分别是新病例。该计划还确保删除或替换无效链接,为研究人员、医疗保健专业人员和个人提供宝贵的资源。该数据库已使用 PHP、HTML、CSS 和 MySQL 实现,可在 https://www.co-19pdb.habdsk.org/ 上免费获取。数据库网址:https://www.co-19pdb.habdsk.org/。© 作者 2024 年。由牛津大学出版社出版。
Biological databases serve as critical basics for modern research, and amid the dynamic landscape of biology, the COVID-19 database has emerged as an indispensable resource. The global outbreak of Covid-19, commencing in December 2019, necessitates comprehensive databases to unravel the intricate connections between this novel virus and cancer. Despite existing databases, a crucial need persists for a centralized and accessible method to acquire precise information within the research community. The main aim of the work is to develop a database which has all the COVID-19-related data available in just one click with auto global notifications. This gap is addressed by the meticulously designed COVID-19 Pandemic Database (CO-19 PDB 2.0), positioned as a comprehensive resource for researchers navigating the complexities of COVID-19 and cancer. Between December 2019 and June 2024, the CO-19 PDB 2.0 systematically collected and organized 120 datasets into six distinct categories, each catering to specific functionalities. These categories encompass a chemical structure database, a digital image database, a visualization tool database, a genomic database, a social science database, and a literature database. Functionalities range from image analysis and gene sequence information to data visualization and updates on environmental events. CO-19 PDB 2.0 has the option to choose either the search page for the database or the autonotification page, providing a seamless retrieval of information. The dedicated page introduces six predefined charts, providing insights into crucial criteria such as the number of cases and deaths', country-wise distribution, 'new cases and recovery', and rates of death and recovery. The global impact of COVID-19 on cancer patients has led to extensive collaboration among research institutions, producing numerous articles and computational studies published in international journals. A key feature of this initiative is auto daily notifications for standardized information updates. Users can easily navigate based on different categories or use a direct search option. The study offers up-to-date COVID-19 datasets and global statistics on COVID-19 and cancer, highlighting the top 10 cancers diagnosed in the USA in 2022. Breast and prostate cancers are the most common, representing 30% and 26% of new cases, respectively. The initiative also ensures the removal or replacement of dead links, providing a valuable resource for researchers, healthcare professionals, and individuals. The database has been implemented in PHP, HTML, CSS and MySQL and is available freely at https://www.co-19pdb.habdsk.org/. Database URL: https://www.co-19pdb.habdsk.org/.© The Author(s) 2024. Published by Oxford University Press.