一种新颖的孔隙弹性成像方法,用于高质量估计体内横向应变、固体应力和流体压力。
A Novel Poroelastography Method for High-quality Estimation of Lateral Strain, Solid Stress and Fluid Pressure In Vivo.
发表日期:2024 Aug 05
作者:
Md Hadiur Rahman Khan, Raffaella Righetti
来源:
IEEE TRANSACTIONS ON MEDICAL IMAGING
摘要:
使用超声弹性成像评估组织的机械和传输特性需要准确估计体积应变的时空分布。由于诸如俯仰限制和横向方向上相位信息的缺乏等物理限制,横向应变估计的质量通常明显低于轴向应变估计的质量。本文开发、测试和验证了一种基于可压缩多孔介质物理学的新型横向应变估计技术。该技术被称为“基于孔隙弹性成像的超声横向应变估计”(PULSE)。 PULSE 与之前提出的横向应变估计器不同,因为它使用组织局部区域内的内部流体流动的基本物理原理作为理论基础。 PULSE 建立了轴向应变的时空变化与横向应变相应的时空变化之间的关系,有效地允许以与轴向应变估计器相当的质量来评估横向应变。我们证明,PULSE 还可用于使用超声孔隙弹性成像 (USPE) 来准确跟踪癌症中压缩引起的固体应力和流体压力。在本研究中,我们报告了 PULSE 的理论公式以及使用有限元 (FE) 和超声模拟进行的验证。与地面真实模拟相比,PULSE 生成的结果显示出小于 5% 的相对误差百分比 (PRE) 和大于 90% 的结构相似性指数 (SSIM)。实验结果用于定性评估 PULSE 的体内性能。该方法可用于克服非轴向应变成像的固有局限性并提高USPE的临床可转化性。
Assessment of mechanical and transport properties of tissues using ultrasound elasticity imaging requires accurate estimations of the spatiotemporal distribution of volumetric strain. Due to physical constraints such as pitch limitation and the lack of phase information in the lateral direction, the quality of lateral strain estimation is typically significantly lower than the quality of axial strain estimation. In this paper, a novel lateral strain estimation technique based on the physics of compressible porous media is developed, tested and validated. This technique is referred to as "Poroelastography-based Ultrasound Lateral Strain Estimation" (PULSE). PULSE differs from previously proposed lateral strain estimators as it uses the underlying physics of internal fluid flow within a local region of the tissue as theoretical foundation. PULSE establishes a relation between spatiotemporal changes in the axial strains and corresponding spatiotemporal changes in the lateral strains, effectively allowing assessment of lateral strains with comparable quality of axial strain estimators. We demonstrate that PULSE can also be used to accurately track compression-induced solid stresses and fluid pressure in cancers using ultrasound poroelastography (USPE). In this study, we report the theoretical formulation for PULSE and validation using finite element (FE) and ultrasound simulations. PULSE-generated results exhibit less than 5% percentage relative error (PRE) and greater than 90% structural similarity index (SSIM) compared to ground truth simulations. Experimental results are included to qualitatively assess the performance of PULSE in vivo. The proposed method can be used to overcome the inherent limitations of non-axial strain imaging and improve clinical translatability of USPE.