基于深度学习的肺腺癌气腔传播(STAS)检测和半定量模型。
Deep learning-based detection and semi-quantitative model for spread through air spaces (STAS) in lung adenocarcinoma.
发表日期:2024 Aug 05
作者:
Yipeng Feng, Hanlin Ding, Xing Huang, Yijian Zhang, Mengyi Lu, Te Zhang, Hui Wang, Yuzhong Chen, Qixing Mao, Wenjie Xia, Bing Chen, Yi Zhang, Chen Chen, Tianhao Gu, Lin Xu, Gaochao Dong, Feng Jiang
来源:
npj Precision Oncology
摘要:
肿瘤通过气腔扩散(STAS)是一种影响肺腺癌(LUAD)患者预后的独特转移模式。 STAS 检测存在一些挑战,包括误检测、观察者间一致性低以及缺乏定量分析。在这项研究中,总共收集了 489 张数字全玻片图像 (WSI)。基于深度学习的 STAS 检测模型(名为 STASNet)的构建是为了计算与 STAS 密度和距离相关的半定量参数。 STASNet 在图块级别上展示了 0.93 的 STAS 检测准确度,在 WSI 级别上确定 STAS 状态的 AUC 为 0.72-0.78。在半定量参数中,T10S 与空间位置信息相结合,对 I 期 LUAD 患者的无病生存率进行了显着分层。此外,STASNet 被部署到实时病理诊断环境中,提高了 STAS 检测率,并识别出了三种容易被误识别的隐匿性 STAS。© 2024。作者。
Tumor spread through air spaces (STAS) is a distinctive metastatic pattern affecting prognosis in lung adenocarcinoma (LUAD) patients. Several challenges are associated with STAS detection, including misdetection, low interobserver agreement, and lack of quantitative analysis. In this research, a total of 489 digital whole slide images (WSIs) were collected. The deep learning-based STAS detection model, named STASNet, was constructed to calculate semi-quantitative parameters associated with STAS density and distance. STASNet demonstrated an accuracy of 0.93 for STAS detection at the tiles level and had an AUC of 0.72-0.78 for determining the STAS status at the WSI level. Among the semi-quantitative parameters, T10S, combined with the spatial location information, significantly stratified stage I LUAD patients on disease-free survival. Additionally, STASNet was deployed into a real-time pathological diagnostic environment, which boosted the STAS detection rate and led to the identification of three easily misidentified types of occult STAS.© 2024. The Author(s).