综合放射组学聚类分析,通过多参数 MRI 解读乳腺癌异质性和预后指标。
Integrative radiomics clustering analysis to decipher breast cancer heterogeneity and prognostic indicators through multiparametric MRI.
发表日期:2024 Aug 07
作者:
Yongsheng He, Shaofeng Duan, Wuling Wang, Hongkai Yang, Shuya Pan, Weiqun Cheng, Liang Xia, Xuan Qi
来源:
npj Breast Cancer
摘要:
多参数磁共振成像 (mpMRI) 彻底改变了乳腺癌的诊断和治疗,包括 T2 加权成像 (T2WI)、扩散加权成像 (DWI) 和动态对比增强 MRI (DCE-MRI)。我们对 194 名乳腺癌患者(2019 年 9 月至 2023 年 10 月)的 mpMRI 数据进行了回顾性分析。使用“pyradiomics”进行放射组学特征提取,使用 MOVICS 进行无监督聚类。有趣的是,我们确定了两个与分子亚型显着差异相关的不同患者群,特别是 Luminal A 亚型分布 (p = 0.03)、雌激素受体 (ER) (p = 0.01)、孕激素受体 (PR) (p = 0.04)、平均肿瘤大小 (p<0.01)、淋巴结转移 (LNM) (p=0.01) 和水肿 (p<0.01)。我们的研究通过使用基于放射组学的聚类分析对肿瘤进行分类、揭示异质性并帮助制定个性化治疗策略,强调了 mpMRI 在乳腺癌中的潜力。© 2024。作者。
Breast cancer diagnosis and treatment have been revolutionized by multiparametric Magnetic Resonance Imaging (mpMRI), encompassing T2-weighted imaging (T2WI), Diffusion-weighted imaging (DWI), and Dynamic Contrast-Enhanced MRI (DCE-MRI). We conducted a retrospective analysis of mpMRI data from 194 breast cancer patients (September 2019 to October 2023). Using 'pyradiomics' for radiomics feature extraction and MOVICS for unsupervised clustering. Interestingly, we identified two distinct patient clusters associated with significant differences in molecular subtypes, particularly in Luminal A subtype distribution (p = 0.03), estrogen receptor (ER) (p = 0.01), progesterone receptor (PR) (p = 0.04), mean tumor size (p < 0.01), lymph node metastasis (LNM) (p = 0.01), and edema (p < 0.01). Our study emphasizes mpMRI's potential in breast cancer by using radiomics-based cluster analysis to categorize tumors, uncovering heterogeneity, and aiding in personalized treatment strategies.© 2024. The Author(s).