研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

乳腺癌患者新辅助治疗后腋窝淋巴结清扫豁免的无创预测:纵向 DCE-MRI 数据的放射组学和深度学习分析。

Non-invasive prediction of axillary lymph node dissection exemption in breast cancer patients post-neoadjuvant therapy: A radiomics and deep learning analysis on longitudinal DCE-MRI data.

发表日期:2024 Aug 09
作者: Yushuai Yu, Ruiliang Chen, Jialu Yi, Kaiyan Huang, Xin Yu, Jie Zhang, Chuangui Song
来源: BREAST

摘要:

在接受新辅助治疗 (NAT) 的临床腋窝淋巴结转移 (cN) 的乳腺癌 (BC) 患者中,精确的腋窝淋巴结 (ALN) 评估决定了治疗策略。迫切需要一种精确的方法来评估这些患者的腋窝淋巴结(ALN)状态。对福建医科大学协和医院160例接受NAT的BC患者进行回顾性分析。我们分析了基线和两周期重新评估动态对比增强 MRI (DCE-MRI) 图像,提取了 3668 个放射学特征和 4096 个深度学习特征,并计算了 1834 个 delta 放射学特征和 2048 个 delta 深度学习特征。采用光梯度增强机 (LightGBM)、支持向量机 (SVM)、随机森林和多层感知器 (MLP) 算法来开发风险模型,并使用 10 倍交叉验证进行评估。在患者中,61 名 (38.13%) NAT 后达到 ypN0 状态。单变量和多变量逻辑回归分析揭示分子亚型和 Ki67 是 NAT 后实现 ypN0 的关键预测因子。基于 SVM 的“数据合并”模型集成了放射组学、深度学习特征和临床数据,表现出出色的 AUC 0.986(95% CI:0.954-1.000),超越了其他模型。我们的研究阐明了固有的挑战和机遇NAT 后乳腺癌管理。通过引入复杂的、基于 SVM 的“数据合并”模型,我们提出了一种准确、动态的 ALN 评估方法,为 BC 的个性化治疗策略提供了潜力。版权所有 © 2024 作者。由爱思唯尔有限公司出版。保留所有权利。
In breast cancer (BC) patients with clinical axillary lymph node metastasis (cN+) undergoing neoadjuvant therapy (NAT), precise axillary lymph node (ALN) assessment dictates therapeutic strategy. There is a critical demand for a precise method to assess the axillary lymph node (ALN) status in these patients.A retrospective analysis was conducted on 160 BC patients undergoing NAT at Fujian Medical University Union Hospital. We analyzed baseline and two-cycle reassessment dynamic contrast-enhanced MRI (DCE-MRI) images, extracting 3668 radiomic and 4096 deep learning features, and computing 1834 delta-radiomic and 2048 delta-deep learning features. Light Gradient Boosting Machine (LightGBM), Support Vector Machine (SVM), RandomForest, and Multilayer Perceptron (MLP) algorithms were employed to develop risk models and were evaluated using 10-fold cross-validation.Of the patients, 61 (38.13 %) achieved ypN0 status post-NAT. Univariate and multivariable logistic regression analyses revealed molecular subtypes and Ki67 as pivotal predictors of achieving ypN0 post-NAT. The SVM-based "Data Amalgamation" model that integrates radiomic, deep learning features, and clinical data, exhibited an outstanding AUC of 0.986 (95 % CI: 0.954-1.000), surpassing other models.Our study illuminates the challenges and opportunities inherent in breast cancer management post-NAT. By introducing a sophisticated, SVM-based "Data Amalgamation" model, we propose a way towards accurate, dynamic ALN assessments, offering potential for personalized therapeutic strategies in BC.Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.