是否有特征可以预测胸膜间皮瘤的不可切除性?
Are there features that can predict the unresectability of pleural mesothelioma?
发表日期:2024 Aug 15
作者:
Maria Mayoral, Jose Arimateia Batista Araujo-Filho, Kay See Tan, Eduardo Ortiz, Prasad S Adusumilli, Valerie Rusch, Marjorie Zauderer, Michelle S Ginsberg
来源:
EUROPEAN RADIOLOGY
摘要:
目前胸膜间皮瘤(PM)的临床分期常常与病理分期不一致。本研究旨在确定有助于预测 PM 不可切除性的临床和放射学特征。对以下患者进行的术前计算机断层扫描 (CT) 和/或正电子发射断层扫描/CT (PET/CT) 回顾性评估了 22 项描述性放射学特征。可能是接受手术的可切除 PM。根据国际肺癌研究协会 (IASLC) 提供的切点,测量胸腔三个层面(上、中、下)的最大胸膜厚度和总胸膜厚度并进行分层。通过单变量分析和逻辑回归模型比较可切除和不可切除肿瘤的临床和放射学特征,包括临床分期。在 133 名患者中,69/133 (52%) 的 PM 可切除,64/133 (48%) 的 PM 不可切除。石棉暴露 (p = 0.005)、新辅助治疗 (p = 0.001)、临床 T 分期 (p < 0.0001)、所有胸膜厚度测量 (p < 0.05)、胸膜厚度模式 (p < 0.0001) 和程度 (p = 0.033) ),肺部侵犯(p = 0.004),胸膜外间隙闭塞(p < 0.0001),扩展到膈下间隙(p = 0.0004),以及代表广泛膈肌接触和/或胸壁受累(p = 0.002)和纵隔的两个组合变量在单变量分析中,入侵(p<0.0001)是显着的预测因子。在多变量分析中,所有模型都取得了很强的诊断性能(曲线下面积(AUC) > 0.8)。两种表现最好的模型,一种包括上层最大胸膜厚度、胸膜外间隙闭塞和纵隔浸润(AUC = 0.876),另一种则通过临床 T 分期整合临床变量和放射学评估(AUC = 0.879) )。选定的临床和放射学特征,包括胸膜厚度测量,似乎是 PM 不可切除性的强有力预测因素。在胸膜间皮瘤患者的术前评估中更准确地预测不可切除性,可以避免不必要的手术并立即开始非手术治疗。据报道,一半的胸膜间皮瘤患者在术前接受了错误的疾病分期。被确定为不可切除性预测因素的 11 个特征被包含在表现良好的预测模型中。更准确的术前分期将帮助临床医生和患者选择最合适的治疗方法。© 2024。作者,获得欧洲放射学会的独家许可。
The current clinical staging of pleural mesothelioma (PM) is often discordant with the pathologic staging. This study aimed to identify clinical and radiological features that could help predict unresectability in PM.Twenty-two descriptive radiologic features were retrospectively evaluated on preoperative computed tomography (CT) and/or positron emission tomography/CT (PET/CT) performed in patients with presumably resectable PM who underwent surgery. Measurements of maximum and sum pleural thickness at three levels of the thorax (upper, middle, and lower) were taken and stratified based on the cutpoints provided by the International Association for the Study of Lung Cancer (IASLC). Clinical and radiological features, including clinical-stage, were compared between resectable and unresectable tumors by univariate analysis and logistic regression modeling.Of 133 patients, 69/133 (52%) had resectable and 64/133 (48%) had unresectable PM. Asbestos exposure (p = 0.005), neoadjuvant treatment (p = 0.001), clinical T-stage (p < 0.0001), all pleural thickness measurements (p < 0.05), pleural thickness pattern (p < 0.0001) and degree (p = 0.033), lung invasion (p = 0.004), extrapleural space obliteration (p < 0.0001), extension to subphrenic space (p = 0.0004), and two combination variables representing extensive diaphragmatic contact and/or chest wall involvement (p = 0.002) and mediastinal invasion (p < 0.0001) were significant predictors at univariate analysis. At multivariable analysis, all models achieved a strong diagnostic performance (area under the curve (AUC) > 0.8). The two best-performing models were one that included the upper-level maximum pleural thickness, extrapleural space obliteration, and mediastinal infiltration (AUC = 0.876), and another that integrated clinical variables and radiological assessment through the clinical T-stage (AUC = 0.879).Selected clinical and radiologic features, including pleural thickness measurements, appear to be strong predictors of unresectability in PM.A more accurate prediction of unresectability in the preoperative assessment of patients with pleural mesothelioma may avoid unnecessary surgery and prompt initiation of nonsurgical treatments.About half of pleural mesothelioma patients are reported to receive an incorrect disease stage preoperatively. Eleven features identified as predictors of unresectability were included in strongly performing predictive models. More accurate preoperative staging will help clinicians and patients choose the most appropriate treatments.© 2024. The Author(s), under exclusive licence to European Society of Radiology.