研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

用于细菌感染治疗的氮化钨过氧化物酶模拟活性的氮空位调节。

Nitrogen Vacancy Modulation of Tungsten Nitride Peroxidase-Mimetic Activity for Bacterial Infection Therapy.

发表日期:2024 Aug 22
作者: Zhongwei Yang, Longwei Wang, Xiaoyu Zhang, Jian Zhang, Na Ren, Longhua Ding, Aizhu Wang, Jing Liu, Hong Liu, Xin Yu
来源: PHYSICAL THERAPY & REHABILITATION JOURNAL

摘要:

细菌感染每年夺去数百万人的生命,而微生物抗生素耐药性的威胁不断升级,加剧了这场全球危机。纳米酶有望成为抗生素的替代品,是抗菌治疗的重要前沿,但其精确的酶起源仍然难以捉摸。随着纳米酶的不断发展,元素氮调控纳米酶的应用已跨越多个领域,包括传感与检测、感染治疗、癌症治疗和污染物降解等。将氮引入纳米酶不仅拓宽了其应用范围,而且对于生物医学研究中催化剂的设计具有重要意义。 W 和 N 之间的协同相互作用会引起电子构型的关键改变,赋予氮化钨 (WN) 类似过氧化物酶的功能。此外,N空位的引入增强了纳米酶的活性,从而增强了WN纳米结构的催化潜力。严格的理论模型和经验验证证实了酶活性的起源。精心设计的 WN 纳米花结构表现出穿越细菌表面的卓越能力,通过直接的物理相互作用发挥有效的杀菌作用。此外,这些纳米结构的拓扑复杂性有助于精确靶向细菌表面产生的自由基,最终对革兰氏阴性和革兰氏阳性细菌菌株具有卓越的杀菌功效,并显着抑制细菌生物膜的形成。重要的是,使用皮肤感染模型的评估强调了 WN 纳米花在有效清除细菌感染和促进伤口愈合方面的能力。这项开创性的研究阐明了假酶活性和细菌捕获杀死策略的领域,为开发创新的高性能人工过氧化物酶提供了肥沃的土壤。
Bacterial infections claim millions of lives every year, with the escalating menace of microbial antibiotic resistance compounding this global crisis. Nanozymes, poised as prospective substitutes for antibiotics, present a significant frontier in antibacterial therapy, yet their precise enzymatic origins remain elusive. With the continuous development of nanozymes, the applications of elemental N-modulated nanozymes have spanned multiple fields, including sensing and detection, infection therapy, cancer treatment, and pollutant degradation. The introduction of nitrogen into nanozymes not only broadens their application range but also holds significant importance for the design of catalysts in biomedical research. The synergistic interplay between W and N induces pivotal alterations in electronic configurations, endowing tungsten nitride (WN) with a peroxidase-like functionality. Furthermore, the introduction of N vacancies augments the nanozyme activity, thus amplifying the catalytic potential of WN nanostructures. Rigorous theoretical modeling and empirical validation corroborate the genesis of the enzyme activity. The meticulously engineered WN nanoflower architecture exhibits an exceptional ability in traversing bacterial surfaces, exerting potent bactericidal effects through direct physical interactions. Additionally, the topological intricacies of these nanostructures facilitate precise targeting of generated radicals on bacterial surfaces, culminating in exceptional bactericidal efficacy against both Gram-negative and Gram-positive bacterial strains along with notable inhibition of bacterial biofilm formation. Importantly, assessments using a skin infection model underscore the proficiency of WN nanoflowers in effectively clearing bacterial infections and fostering wound healing. This pioneering research illuminates the realm of pseudoenzyme activity and bacterial capture-killing strategies, promising a fertile ground for the development of innovative, high-performance artificial peroxidases.