研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

针对病毒 RNA 主要蛋白酶区域的抗 SARS-CoV-2 gapmer 反义寡核苷酸。

Anti-SARS-CoV-2 gapmer antisense oligonucleotides targeting the main protease region of viral RNA.

发表日期:2024 Aug 22
作者: Masako Yamasaki, Wakana Saso, Takuya Yamamoto, Masayoshi Sato, Hiroko Takagi, Tetsuya Hasegawa, Yuji Kozakura, Hiroyuki Yokoi, Hirofumi Ohashi, Kana Tsuchimoto, Rina Hashimoto, Shuetsu Fukushi, Akihiko Uda, Masamichi Muramatsu, Kazuo Takayama, Ken Maeda, Yoshimasa Takahashi, Tsuyoshi Nagase, Koichi Watashi
来源: ANTIVIRAL RESEARCH

摘要:

鉴于全球范围内爆发/重新出现呼吸道病毒的风险,迫切需要建立新的抗病毒策略。在这项研究中,我们提出了一种方案,以鉴定针对严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) RNA 的 gapmer 反义寡核苷酸 (ASO),可有效抑制病毒复制。我们合成了大约 300 个gapmer ASO,旨在针对各种 SARS-CoV-2 RNA 区域,并评估它们在基于细胞的测定中的活性。通过细胞培养系统中的多步筛选,我们发现 ASO#41 靶向病毒主要蛋白酶的编码区,可降低受感染细胞中的 SARS-CoV-2 RNA 水平,并抑制病毒诱导的细胞病变效应。在 iPS 细胞衍生的人肺类器官中也观察到了 ASO#41 的抗病毒作用。 ASO#41 在基因组复制过程中以内源 RNaseH 依赖性方式耗尽细胞内病毒 RNA。 ASO#41 对相关 SARS-CoV-2 变体(包括 Alpha、Delta 和 Omicron)表现出广泛的抗病毒活性。对小鼠进行鼻内给药后,ASO#41 在肺部出现细胞内积聚,并显着降低了病毒感染滴度,并且由于 SARS-CoV-2 感染而导致的体重减轻较轻。含磷酰胍主链的进一步化学修饰提高了抗 SARS-CoV-2 活性,50% 抗病毒抑制浓度为 23.4 nM,是迄今为止报道的最强的抗 SARS-CoV-2 ASO 之一。我们的研究提出了一种识别针对 SARS-CoV-2 的活性 ASO 的方法,该方法可能有助于通过针对呼吸道病毒的基因组 RNA 来建立抗病毒策略。版权所有 © 2024。由 Elsevier B.V. 出版。
Given the worldwide risk for the outbreak of emerging/re-emerging respiratory viruses, establishment of new antiviral strategies is greatly demanded. In this study, we present a scheme to identify gapmer antisense oligonucleotides (ASOs) targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA that efficiently inhibit viral replication. We synthesized approximately 300 gapmer ASOs designed to target various SARS-CoV-2 RNA regions and evaluated their activity in cell-based assays. Through a multistep screening in cell culture systems, we identified that ASO#41, targeting the coding region for viral main protease, reduced SARS-CoV-2 RNA levels in infected cells and inhibited virus-induced cytopathic effects. Antiviral effect of ASO#41 was also observed in iPS cell-derived human lung organoids. ASO#41 depleted intracellular viral RNAs during genome replication in an endogenous RNaseH-dependent manner. ASO#41 showed a wide range of antiviral activity against SARS-CoV-2 variants of concern including Alpha, Delta, and Omicron. Intranasal administration to mice exhibited intracellular accumulation of ASO#41 in the lung and significantly reduced the viral infectious titer, with milder body weight loss due to SARS-CoV-2 infection. Further chemical modification with phosphoryl guanidine-containing backbone linkages provided an elevation of anti-SARS-CoV-2 activity, with 23.4 nM of 50% antiviral inhibitory concentration, one of the strongest anti-SARS-CoV-2 ASOs reported so far. Our study presents an approach to identify active ASOs against SARS-CoV-2, which is potentially useful for establishing an antiviral strategy by targeting genome RNA of respiratory viruses.Copyright © 2024. Published by Elsevier B.V.