3D壳聚糖/羟基磷灰石支架中含有介孔SIO2-HA颗粒:治愈骨缺损的新步骤
3D chitosan/hydroxyapatite scaffolds containing mesoporous SiO2-HA particles: A new step to healing bone defects
影响因子:8.50000
分区:生物学2区 Top / 生化与分子生物学2区 应用化学2区 高分子科学2区
发表日期:2024 Oct
作者:
Nesa Abdian, Hamid Soltani Zangbar, Mohamadreza Etminanfar, Hamed Hamishehkar
摘要
与不可分解的骨修复材料相比,具有高机械强度的生物相容性支架具有高机械强度,可以增强骨再生。在这项研究中,通过冷冻干燥过程制造了多孔壳聚糖(CS)/羟基磷灰石(HA)支架。根据现场发射扫描电子显微镜(FESEM)的结果,将介孔SIO2-HA颗粒组合在CS/HA支架中导致了均匀的多孔结构。它从320±1.1μm减少到145±1.4μm。此外,该支架的抗压强度为25±1.2 MPa。体外方法表现出良好的肉瘤成骨细胞系(SAOS-2)粘附,扩散和增殖,表明支架为细胞培养提供了合适的环境。同样,在植入大鼠植入的缺陷部位进行的体内分析证明,CS/HA/中孔SiO2-Ha脚手架可以通过增强骨质传导并融化成骨基因的表达,从而促进骨骼再生,从而使成骨基因的表达至19.31(与对照组相比约5倍)(与对照组相比约为5倍)。此外,手术后21天后,这种支架的新骨形成百分比等于90%。因此,将介孔SIO2-HA颗粒掺入CS/HA支架中可以提出一种新的未来组织工程和再生策略。
Abstract
Biocompatible scaffolds with high mechanical strengths that contain biodegradable components could boost bone regeneration compared with nondegradable bone repair materials. In this study, porous chitosan (CS)/hydroxyapatite (HA) scaffolds containing mesoporous SiO2-HA particles were fabricated through the freeze-drying process. According to field emission scanning electron microscopy (FESEM) results, combining mesoporous SiO2-HA particles in CS/HA scaffolds led to a uniform porous structure. It decreased pore sizes from 320 ± 1.1 μm to 145 ± 1.4 μm. Moreover, the compressive strength value of this scaffold was 25 ± 1.2 MPa. The in-vitro approaches exhibited good sarcoma osteogenic cell line (SAOS-2) adhesion, spreading, and proliferation, indicating that the scaffolds provided a suitable environment for cell cultivation. Also, in-vivo analyses in implanted defect sites of rats proved that the CS/HA/mesoporous SiO2-HA scaffolds could promote bone regeneration via enhancing osteoconduction and meliorating the expression of osteogenesis gene to 19.31 (about 5-fold higher compared to the control group) by exposing them to the bone-like precursors. Further, this scaffold's new bone formation percentage was equal to 90 % after 21 days post-surgery. Therefore, incorporating mesoporous SiO2-HA particles into CS/HA scaffolds can suggest a new future tissue engineering and regeneration strategy.