ADC 的 Delta 放射组学特征可作为肺癌治疗反应的早期预测因子。
Delta-radiomics features of ADC maps as early predictors of treatment response in lung cancer.
发表日期:2024 Aug 26
作者:
Christian M Heidt, Jonas R Bohn, Róbert Stollmayer, Oyunbileg von Stackelberg, Stephan Rheinheimer, Farastuk Bozorgmehr, Karsten Senghas, Kai Schlamp, Oliver Weinheimer, Frederik L Giesel, Hans-Ulrich Kauczor, Claus Peter Heußel, Gudula Heußel
来源:
Insights into Imaging
摘要:
研究使用弥散加权 MRI 衍生的放射组学特征检测晚期肺腺癌患者早期治疗引起的肿瘤组织变化的可行性。这项前瞻性观察性研究包括 144 名接受酪氨酸激酶抑制剂(TKI,n = 64)或铂类药物治疗的患者。基于化疗(PBC,n = 80)治疗肺腺癌。患者在治疗前一天(基线,所有患者)以及治疗开始后 1 (PBC) 或 7 和 14 (TKI) 天接受弥散加权 MRI。从手动描绘的肿瘤体积中提取了一百九十七个放射组学特征。根据 2 个月后 CT 得出的 RECIST 和无进展生存期 (PFS),分析特征随时间的变化与治疗反应 (TR) 的相关性。在 14 个选定的 delta 放射组学特征中,6 个显示与 PFS 或 TR 显着相关。 14 天后发现了最显着的相关性。量化 ROI 异质性的特征,例如短期强调 (p = 0.04(pfs)/0.005(tr))、梯度短期强调 (p = 0.06(pfs)/0.01(tr)) 和区域百分比 (p = 0.02(pfs)/0.01(tr))在总体TR较好的患者中增加,而总体反应较差的患者显示量化ROI同质性的特征增加,例如标准化逆差(p = 0.01(pfs)/0.04(tr)) 。这些特征的聚类允许将患者分为生存期较长和较短的组。开始治疗两周后,肺腺癌的扩散 MRI 揭示了可量化的组织水平见解,与未来的治疗(无)反应密切相关。因此,扩散 MRI 衍生的放射组学有望作为一种早期、无辐射的决策支持,以预测疗效并可能尽早改变治疗过程。Delta 放射组学纹理特征源自肺腺癌的扩散加权 MRI,最早在 2 周内获得开始治疗后,与通过后来的形态学成像获得的 RECIST TR 和 PFS 显着相关。形态学成像需要时间来检测肺癌中的 TR,弥散加权 MRI 可能会更早地识别反应。一些放射组学特征与 TR 和 PFS 显着相关。弥散加权 MRI 放射组学可能有助于患者分层和管理。© 2024。作者。
Investigate the feasibility of detecting early treatment-induced tumor tissue changes in patients with advanced lung adenocarcinoma using diffusion-weighted MRI-derived radiomics features.This prospective observational study included 144 patients receiving either tyrosine kinase inhibitors (TKI, n = 64) or platinum-based chemotherapy (PBC, n = 80) for the treatment of pulmonary adenocarcinoma. Patients underwent diffusion-weighted MRI the day prior to therapy (baseline, all patients), as well as either + 1 (PBC) or + 7 and + 14 (TKI) days after treatment initiation. One hundred ninety-seven radiomics features were extracted from manually delineated tumor volumes. Feature changes over time were analyzed for correlation with treatment response (TR) according to CT-derived RECIST after 2 months and progression-free survival (PFS).Out of 14 selected delta-radiomics features, 6 showed significant correlations with PFS or TR. Most significant correlations were found after 14 days. Features quantifying ROI heterogeneity, such as short-run emphasis (p = 0.04(pfs)/0.005(tr)), gradient short-run emphasis (p = 0.06(pfs)/0.01(tr)), and zone percentage (p = 0.02(pfs)/0.01(tr)) increased in patients with overall better TR whereas patients with worse overall response showed an increase in features quantifying ROI homogeneity, such as normalized inverse difference (p = 0.01(pfs)/0.04(tr)). Clustering of these features allows stratification of patients into groups of longer and shorter survival.Two weeks after initiation of treatment, diffusion MRI of lung adenocarcinoma reveals quantifiable tissue-level insights that correlate well with future treatment (non-)response. Diffusion MRI-derived radiomics thus shows promise as an early, radiation-free decision-support to predict efficacy and potentially alter the treatment course early.Delta-Radiomics texture features derived from diffusion-weighted MRI of lung adenocarcinoma, acquired as early as 2 weeks after initiation of treatment, are significantly correlated with RECIST TR and PFS as obtained through later morphological imaging.Morphological imaging takes time to detect TR in lung cancer, diffusion-weighted MRI might identify response earlier. Several radiomics features are significantly correlated with TR and PFS. Radiomics of diffusion-weighted MRI may facilitate patient stratification and management.© 2024. The Author(s).