研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

CT 放射学和全身炎症特征的纵向变化可预测接受免疫检查点抑制剂治疗的晚期非小细胞肺癌患者的生存率。

Longitudinal Changes of CT-radiomic and Systemic Inflammatory Features Predict Survival in Advanced Non-Small Cell Lung Cancer Patients Treated With Immune Checkpoint Inhibitors.

发表日期:2024 Aug 27
作者: Maurizio Balbi, Giulia Mazzaschi, Ludovica Leo, Lucas Moron Dalla Tor, Gianluca Milanese, Cristina Marrocchio, Mario Silva, Rebecca Mura, Pasquale Favia, Giovanni Bocchialini, Francesca Trentini, Roberta Minari, Luca Ampollini, Federico Quaini, Giovanni Roti, Marcello Tiseo, Nicola Sverzellati
来源: JOURNAL OF THORACIC IMAGING

摘要:

本研究旨在确定 CT 放射组学特征 (RF) 和全身炎症指数的纵向变化在预测接受免疫检查点抑制剂 (ICIs) 治疗的晚期非小细胞肺癌 (NSCLC) 的生存方面是否优于单时间点评估。从单中心 IV 期 NSCLC 患者队列中回顾性获取治疗前 (T0) 和首次疾病评估 (T1) RF 和全身炎症指数,并将其 delta (Δ) 变化计算为 [(T1-T0)/T0]。选择来自原发肿瘤的 RF,使用 LASSO Cox 回归模型检测到的标准化预测因子的线性组合来构建基线放射组学 (RAD) 和 Δ-RAD 评分。 Cox 模型是单独使用临床特征或结合基线和 Δ 血液参数生成的,并与基线-RAD 和 Δ-RAD 集成。所有模型均经过 3 倍交叉验证。通过 Kaplan-Meier 分析测试每个模型的预后指数 (PI),以对总生存期 (OS) 进行分层。我们纳入了 90 名接受 ICI 治疗的 NSCLC 患者(中位年龄 70 岁 [IQR=42 至 85],63 名男性)。 Δ-RAD 在预测 OS 方面优于基线 RAD [c 指数:0.632(95%CI:0.628 至 0.636)与 0.605(95%CI:0.601 至 0.608)在测试分组中]。将全身炎症指数和 Δ-RAD 的纵向变化与临床数据相结合,获得了最佳模型性能 [Integrated-Δ 模型,c 指数:训练时为 0.750(95% CI:0.749 至 0.751),训练时为 0.718(95% CI:0.715)到 0.721)在测试分裂]。 PI在所有模型中实现了显着的OS分层(P值<0.01),在Δ模型中达到了最大的判别能力(高危组HR高达7.37,95%CI:3.9至13.94,P<0.01)。Δ-与单时间点放射组学相比,RAD 在晚期 ICI 治疗的 NSCLC 中改善了 OS 预测。将 Δ-RAD 与临床和实验室数据的纵向评估相结合,进一步改善了预后表现。版权所有 © 2024 Wolters Kluwer Health, Inc. 保留所有权利。
This study aims to determine whether longitudinal changes in CT radiomic features (RFs) and systemic inflammatory indices outperform single-time-point assessment in predicting survival in advanced non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICIs).We retrospectively acquired pretreatment (T0) and first disease assessment (T1) RFs and systemic inflammatory indices from a single-center cohort of stage IV NSCLC patients and computed their delta (Δ) variation as [(T1-T0)/T0]. RFs from the primary tumor were selected for building baseline-radiomic (RAD) and Δ-RAD scores using the linear combination of standardized predictors detected by LASSO Cox regression models. Cox models were generated using clinical features alone or combined with baseline and Δ blood parameters and integrated with baseline-RAD and Δ-RAD. All models were 3-fold cross-validated. A prognostic index (PI) of each model was tested to stratify overall survival (OS) through Kaplan-Meier analysis.We included 90 ICI-treated NSCLC patients (median age 70 y [IQR=42 to 85], 63 males). Δ-RAD outperformed baseline-RAD for predicting OS [c-index: 0.632 (95%CI: 0.628 to 0.636) vs. 0.605 (95%CI: 0.601 to 0.608) in the test splits]. Integrating longitudinal changes of systemic inflammatory indices and Δ-RAD with clinical data led to the best model performance [Integrated-Δ model, c-index: 0.750 (95% CI: 0.749 to 0.751) in training and 0.718 (95% CI: 0.715 to 0.721) in testing splits]. PI enabled significant OS stratification within all the models (P-value <0.01), reaching the greatest discriminative ability in Δ models (high-risk group HR up to 7.37, 95% CI: 3.9 to 13.94, P<0.01).Δ-RAD improved OS prediction compared with single-time-point radiomic in advanced ICI-treated NSCLC. Integrating Δ-RAD with a longitudinal assessment of clinical and laboratory data further improved the prognostic performance.Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved.