技术进步和构建复杂肠道器官系统的挑战
Technological advances and challenges in constructing complex gut organoid systems
影响因子:4.30000
分区:生物学2区 / 发育生物学2区 细胞生物学3区
发表日期:2024
作者:
Longjin Zheng, Yang Zhan, Chenxuan Wang, Qigui Fan, Denglong Sun, Yingmeng Li, Yanxia Xiong
摘要
器官技术的最新进步预示了生物医学研究的变革性时代,其特征是肠道器官的出现,这些器官复制了人类肠道的结构和功能复杂性。这些干细胞衍生的结构为研究肠道生理,疾病发病机理和治疗性干预提供了动态平台。该模型在复制细胞相互作用和组织动力学方面优于传统的二维细胞培养。肠道类器官代表着个性化医学的重大飞跃。它们为人类药物反应提供了预测模型,从而最大程度地减少了对动物模型的依赖,并为更具道德和相关的研究方法铺平了道路。但是,从基本的类器官模型转变为更复杂的仿生系统,这些系统封装了肠道的多方面环境,包括其与微生物群落,免疫细胞和神经网络主持人的相互作用。这篇综述着重于克服这些障碍的最新技术进步,强调了创新的工程方法,用于整合多种细胞类型以复制肠道的免疫和神经成分。它还探讨了先进的制造技术的应用,例如3D生物打印和微流体,以更准确地复制人体组织结构。他们提供了有关人类肠道复杂工作的见解,从而促进了有效的,有效的治疗方法的发展。这些进步在改变疾病建模和药物发现方面有希望。未来的研究方向旨在进一步完善这些模型,使它们更容易访问,可在科学探究和临床实践中更广泛的应用,从而预示着个性化和预测性医学的新时代。
Abstract
Recent advancements in organoid technology have heralded a transformative era in biomedical research, characterized by the emergence of gut organoids that replicate the structural and functional complexity of the human intestines. These stem cell-derived structures provide a dynamic platform for investigating intestinal physiology, disease pathogenesis, and therapeutic interventions. This model outperforms traditional two-dimensional cell cultures in replicating cell interactions and tissue dynamics. Gut organoids represent a significant leap towards personalized medicine. They provide a predictive model for human drug responses, thereby minimizing reliance on animal models and paving the path for more ethical and relevant research approaches. However, the transition from basic organoid models to more sophisticated, biomimetic systems that encapsulate the gut's multifaceted environment-including its interactions with microbial communities, immune cells, and neural networks-presents significant scientific challenges. This review concentrates on recent technological strides in overcoming these barriers, emphasizing innovative engineering approaches for integrating diverse cell types to replicate the gut's immune and neural components. It also explores the application of advanced fabrication techniques, such as 3D bioprinting and microfluidics, to construct organoids that more accurately replicate human tissue architecture. They provide insights into the intricate workings of the human gut, fostering the development of targeted, effective treatments. These advancements hold promise in revolutionizing disease modeling and drug discovery. Future research directions aim at refining these models further, making them more accessible and scalable for wider applications in scientific inquiry and clinical practice, thus heralding a new era of personalized and predictive medicine.