研究动态
Articles below are published ahead of final publication in an issue. Please cite articles in the following format: authors, (year), title, journal, DOI.

一种机器学习模型,用于预测慢性乙型肝炎功能性治愈后的肝脏相关结果。

A machine learning model to predict liver-related outcomes after the functional cure of chronic hepatitis B.

发表日期:2024 Aug 30
作者: Moon Haeng Hur, Terry Cheuk-Fung Yip, Seung Up Kim, Hyun Woong Lee, Han Ah Lee, Hyung-Chul Lee, Grace Lai-Hung Wong, Vincent Wai-Sun Wong, Jun Yong Park, Sang Hoon Ahn, Beom Kyung Kim, Hwi Young Kim, Yeon Seok Seo, Hyunjae Shin, Jeayeon Park, Yunmi Ko, Youngsu Park, Yun Bin Lee, Su Jong Yu, Sang Hyub Lee, Yoon Jun Kim, Jung-Hwan Yoon, Jeong-Hoon Lee
来源: JOURNAL OF HEPATOLOGY

摘要:

乙型肝炎表面抗原 (HBsAg) 血清清除后,肝细胞癌 (HCC) 和肝功能失代偿的风险仍然存在。本研究旨在开发和验证机器学习模型,以预测 HBsAg 血清清除后发生肝脏相关结局 (LRO) 的风险。 韩国和日本的 6 个中心连续招募了 4,787 名 2000 年至 2022 年间实现 HBsAg 血清清除的患者。香港全港范围的数据库,包括培训组 (n=944)、内部验证组 (n=1,102) 和外部验证组 (n=2,741)。在每个队列中开发并比较了三种基于机器学习的模型。主要结局是任何 LRO 的发生,包括 HCC、失代偿和肝脏相关死亡。在中位随访 55.2(四分位距 = 30.1-92.3)个月期间,确认了 123 例 LRO(1.1%/人年) )在韩国队列中。选择训练队列中预测性能最佳的模型作为最终模型(指定为 PLAN-B-CURE),该模型使用梯度增强算法和 7 个变量(年龄、性别、糖尿病、饮酒、肝硬化、白蛋白和血小板计数)。与之前的 HCC 预测模型相比,PLAN-B-CURE 在训练队列中显示出显着优越的准确性(c 指数:0.82 vs. 0.63-0.70,所有 P<0.001;受试者工作特征曲线下面积:0.86 vs. 0.62- 0.72,所有 P<0.01;精确率-召回率曲线下面积:0.53 vs. 0.13-0.29,所有 P<0.01)。 PLAN-B-CURE 显示了可靠的校准功能(Hosmer-Lemeshow 检验 P>0.05),并且这些结果在内部和外部验证队列中得到了重现。这种由 7 个变量组成的新型机器学习模型提供了 HBsAg 血清清除后 LRO 的可靠风险预测可用于个性化监测。版权所有 © 2024 欧洲肝脏研究协会。由 Elsevier B.V. 出版。保留所有权利。
The risk of hepatocellular carcinoma (HCC) and hepatic decompensation persists after hepatitis B surface antigen (HBsAg) seroclearance. This study aimed to develop and validate a machine learning model to predict the risk of liver-related outcomes (LROs) following HBsAg seroclearance.A total of 4,787 consecutive patients who achieved HBsAg seroclearance between 2000 and 2022 were enrolled from 6 centers in South Korea and a territory-wide database in Hong Kong, comprising the training (n=944), internal validation (n=1,102), and external validation (n=2,741) cohorts. Three machine learning-based models were developed and compared in each cohort. The primary outcome was the development of any LRO, including HCC, decompensation, and liver-related death.During a median follow-up of 55.2 (interquartile range=30.1-92.3) months, 123 LROs were confirmed (1.1%/person-year) in the Korean cohort. A model with the best predictive performance in the training cohort was selected as the final model (designated as PLAN-B-CURE), which was constructed using a gradient boosting algorithm and 7 variables (age, sex, diabetes, alcohol consumption, cirrhosis, albumin, and platelet count). Compared to previous HCC prediction models, PLAN-B-CURE showed significantly superior accuracy in the training cohort (c-index: 0.82 vs. 0.63-0.70, all P<0.001; area under the receiver operating characteristic curve: 0.86 vs. 0.62-0.72, all P<0.01; area under the precision-recall curve: 0.53 vs. 0.13-0.29, all P<0.01). PLAN-B-CURE showed a reliable calibration function (Hosmer-Lemeshow test P>0.05) and these results were reproduced in the internal and external validation cohorts.This novel machine learning model consisting of 7 variables provides reliable risk prediction of LRO after HBsAg seroclearance that can be used for personalized surveillance.Copyright © 2024 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.