纳斯马耳载体中创新性荧光聚合物:提升癌症治疗与成像的全新策略
Innovative Fluorescent Polymers in Niosomal Carriers: A Novel Approach to Enhancing Cancer Therapy and Imaging
DOI 原文链接
用sci-hub下载
如无法下载,请从 Sci-Hub 选择可用站点尝试。
影响因子:4.1
分区:医学4区 / 高分子科学3区 生化与分子生物学4区 材料科学:生物材料4区
发表日期:2024 Oct
作者:
Selay Tornaci, Merve Erginer, Umut Bulut, Beste Sener, Elifsu Persilioglu, İsmail Bergutay Kalaycilar, Emine Guler Celik, Hasret Yardibi, Pinar Siyah, Oguzhan Karakurt, Ali Cirpan, Baris Gokalsin, Ahmet Murat Senisik, Firat Baris Barlas
DOI:
10.1002/mabi.202400343
摘要
预计在未来二十年内,癌症将成为导致疾病相关死亡的主要原因,凸显出个性化和适应性治疗策略的迫切需求。这些策略尤为重要,因为药物疗效高度变异,癌细胞也易于产生耐药性。本研究利用三种创新性荧光聚合物(FP-1、FP-2和FP-3)封装于纳斯马耳载体中,探索其在治疗(化疗和放疗)与荧光成像结合的治疗-诊断(theranostic)纳米技术中的潜力。这些载体在三种癌细胞系(A549、MCF-7和HOb)中的细胞毒性效果被评估,且进一步分析其在特定剂量下增强线性加速器(LINAC)放射治疗效果的能力。利用荧光显微镜验证其在癌细胞与正常细胞中的摄取和定位。结果显示,这些纳斯马耳载体不仅改善了放疗的抗增殖效果,还展示了荧光聚合物在体外成像中的实际应用。这一双重功能强调了剂量优化的重要性,以最大化治疗效果、降低不良反应,从而提升癌症治疗的整体效果。
Abstract
Cancer is anticipated to become the pioneer reason of disease-related deaths worldwide in the next two decades, underscoring the urgent need for personalized and adaptive treatment strategies. These strategies are crucial due to the high variability in drug efficacy and the tendency of cancer cells to develop resistance. This study investigates the potential of theranostic nanotechnology using three innovative fluorescent polymers (FP-1, FP-2, and FP-3) encapsulated in niosomal carriers, combining therapy (chemotherapy and radiotherapy) with fluorescence imaging. These cargoes are assessed for their cytotoxic effects across three cancer cell lines (A549, MCF-7, and HOb), with further analysis to determine their capacity to augment the effects of radiotherapy using a Linear Accelerator (LINAC) at specific doses. Fluorescence microscopy is utilized to verify their uptake and localization in cancerous versus healthy cell lines. The results confirmed that these niosomal cargoes not only improved the antiproliferative effects of radiotherapy but also demonstrate the practical application of fluorescent polymers in in vitro imaging. This dual function underscores the importance of dose optimization to maximize therapeutic benefits while minimizing adverse effects, thereby enhancing the overall efficacy of cancer treatments.