PSMD2 过表达作为免疫检查点和酪氨酸激酶抑制剂治疗的肾细胞癌耐药性和预后的生物标志物。
PSMD2 overexpression as a biomarker for resistance and prognosis in renal cell carcinoma treated with immune checkpoint and tyrosine kinase inhibitors.
发表日期:2024 Sep 02
作者:
Xianglai Xu, Jiahao Wang, Ying Wang, Yanjun Zhu, Jiajun Wang, Jianming Guo
来源:
Immunity & Ageing
摘要:
综合免疫检查点抑制剂(ICIs)加酪氨酸激酶抑制剂(TKI)现在是治疗肾细胞癌(mRCC)的推荐一线疗法。肿瘤中蛋白酶体 26S 亚基非 ATP 酶 2 (PSMD2) 过度表达与肿瘤进展相关。目前,mRCC 缺乏 ICI TKI 组合的既定生物标志物。本研究涉及对接受 ICI TKI 治疗的两组 RCC 患者(ZS-MRCC 和 JAVELIN-Renal-101)进行 RNA 测序。我们利用免疫组织化学和流式细胞术,旨在评估高风险局部肾细胞癌样本中的免疫细胞浸润和功能。根据 RECIST 标准评估缓解和无进展生存 (PFS)。PSMD2 在晚期 RCC 和 ICI TKI 治疗无反应者中显着过度表达。在 ZS-MRCC 和 JAVELIN-101 队列中,过度表达的 PSMD2 与不良 PFS 相关。多变量 Cox 分析验证 PSMD2 作为独立的 PFS 预测因子。 PSMD2 过表达除了 PD1 CD4 T 细胞增加外,还与 CD8 T 细胞(尤其是 GZMB CD8 T 细胞)减少有关。此外,PSMD2 水平高的肿瘤表现出 T 细胞耗竭水平增强和调节性 T 细胞含量更高。随后开发了基于 PSMD2 表达和其他筛选因素的机器学习 (ML) 模型来预测 ICI TKI 的有效性。 PSMD2 表达升高与接受 ICI TKI 治疗的 mRCC 患者的耐药性和 PFS 降低有关。高 PSMD2 水平还与功能受损和肿瘤浸润淋巴细胞耗竭增加有关。结合 PSMD2 表达的 ML 模型可能会识别出更有可能从 ICI TKI 中受益的患者。© 2024。Springer Nature Switzerland AG。
Integrated immune checkpoint inhibitors (ICIs) plus tyrosine kinase inhibitors (TKIs) are now the recommended first-line therapy to manage renal cell carcinoma (mRCC). Proteasome 26S subunit non-ATPase 2 (PSMD2) overexpression in tumors has been correlated with tumor progression. Currently, mRCC lacks an established biomarker for the combination of ICI+TKI.This study involved RNA sequencing of RCC patients from two cohorts treated with ICI+TKI (ZS-MRCC and JAVELIN-Renal-101). We utilized immunohistochemistry alongside flow cytometry, aiming at assessing immune cell infiltration and functionality in high-risk localized RCC samples. Response and progression-free survival (PFS) were evaluated relying upon RECIST criteria.PSMD2 was significantly overexpressed in advanced RCC and among non-responders to ICI+TKI therapy. Overexpressed PSMD2 was correlated with poor PFS in the ZS-MRCC and JAVELIN-101 cohorts. Multivariate Cox analysis validated PSMD2 as an independent PFS predictor. PSMD2 overexpression was related to a reduction in CD8+ T cells, especially GZMB+ CD8+ T cells, besides an increase in PD1+ CD4+ T cells. Additionally, tumors with high PSMD2 levels showed enhanced T cell exhaustion levels and a higher regulatory T cell presence. A Machine Learning (ML) model based on PSMD2 expression and other screened factors was subsequently developed to predict the effectiveness of ICI+TKI.Elevated PSMD2 expression is linked to resistance and decreased PFS in mRCC patients undergoing ICI+TKI therapy. High PSMD2 levels are also associated with impaired function and increased exhaustion of tumor-infiltrating lymphocytes. An ML model incorporating PSMD2 expression could potentially identify patients who may have a higher likelihood of benefiting from ICI+TKI.© 2024. Springer Nature Switzerland AG.