前沿快讯
聚焦肿瘤与肿瘤类器官最新研究,动态一手掌握。

基于18F-FDG PET/CT放射组学特征在结直肠腺癌患者中区分原发性肺癌与孤立性肺转移的价值

Value of 18F-FDG PET/CT-based radiomics features for differentiating primary lung cancer and solitary lung metastasis in patients with colorectal adenocarcinoma

DOI 原文链接
用sci-hub下载
ℹ️
如无法下载,请从 Sci-Hub 选择可用站点尝试。
影响因子:2.4
分区:医学4区 / 核科学技术3区 生物学4区 核医学4区
发表日期:2025
作者: Na Wang, Meng Dai, Fenglian Jing, Yunuan Liu, Yan Zhao, Zhaoqi Zhang, Jianfang Wang, Jingmian Zhang, Yingchen Wang, Xinming Zhao
DOI: 10.1080/09553002.2024.2404465

摘要

本研究旨在探讨18F-氟脱氧葡萄糖正电子发射计算机断层扫描(18F-FDG PET/CT)放射组学在区分结直肠癌(CRC)患者中的原发性肺癌(PLC)与孤立性肺转移(SLM)中的应用价值和适用性。该回顾性研究纳入了103例CRC伴孤立性肺结节(SPNs)的患者。采用最小绝对收缩和选择算子(LASSO)筛选最优放射组学特征,并建立PET/CT放射组学模型。还开发了PET/CT视觉模型和结合放射组学与PET/CT视觉特征的复合模型。通过受试者工作特性(ROC)曲线下面积(AUC)评估模型的预测价值和诊断效率。结果显示,用于区分PLC与SLM的PET/CT放射组学模型的AUC为0.872(95% CI:0.806-0.939),与视觉模型(0.829,95% CI:0.749-0.908;p = .352)无显著差异。然而,复合模型的AUC(0.936,95% CI:0.892-0.981)明显高于单独的放射组学模型(p = .005)和视觉模型(p = .001)。PET/CT放射组学在区分CRC伴SPNs的PLC与SLM方面具有良好效果,可指导个性化治疗的实施。

Abstract

To investigate the value and applicability of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) radiomics in differentiating primary lung cancer (PLC) from solitary lung metastasis (SLM) in patients with colorectal cancer (CRC).This retrospective study included 103 patients with CRC and solitary pulmonary nodules (SPNs). The least absolute shrinkage and selection operator (LASSO) was used to screen for optimal radiomics features and establish a PET/CT radiomics model. PET/CT Visual and complex models (combining radiomics with PET/CT visual features) were developed. The area under the receiver operating characteristic (ROC) curve (AUC) was used to determine the predictive value and diagnostic efficiency of the models.The AUC of the PET/CT radiomics model for differentiating PLC from SLM was 0.872 (95% CI: 0.806-0.939), which was not different from that of the visual (0.829 [95% CI: 0.749-0.908; p = .352]). However, the AUC of the complex model (0.936 [95% CI:0.892-0.981]) was significantly higher than that of the PET/CT radiomics (p = .005) and visual model (p = .001). The sensitivity (SEN), specificity (SPE), accuracy (ACC), positive predictive value (PPV), and negative predictive value (NPV) of PET/CT radiomics for differentiating PLC from SLM were 0.720, 0.887, 0.806, 0.857, and 0.770, respectively.PET/CT radiomics can effectively distinguish PLC and SLM in patients with CRC and SPNs and guide the implementation of personalized treatment.