描述间歇性雄激素剥夺治疗控制前列腺癌的联合阈值Filippov模型
A joint-threshold Filippov model describing the effect of intermittent androgen-deprivation therapy in controlling prostate cancer
                    
                        DOI 原文链接
                    
                    
                    
                
                
                        
                        
                            用sci-hub下载
                        
                        
                            
                            
                    
                
                                如无法下载,请从 Sci-Hub 选择可用站点尝试。
                            
                        
                                影响因子:1.8                            
                                                        
                                分区:数学4区 / 生物学4区 数学与计算生物学4区                            
                                                    
                            发表日期:2024 Nov                        
                        
                            作者:
                            Aili Wang, Rong Yan, Haixia Li, Xiaodan Sun, Weike Zhou, Stacey R Smith
                        
                                                
                            DOI:
                            10.1016/j.mbs.2024.109301
                        
                                            摘要
                        间歇性雄激素剥夺治疗(IADT)相较于持续治疗,有助于延缓治疗抗药性和癌症复发的发生。为研究IADT在控制前列腺癌中的作用,我们建立了具有联合阈值函数的Filippov前列腺癌模型:当雄激素依赖细胞(AC-Ds)和雄激素非依赖细胞(AC-Is)总数超过阈值ET时,实施治疗;当总数低于ET时,暂停治疗。参数变化导致模型经历一系列滑动分岔,包括边界节点、焦点、鞍点、鞍结点和切线分岔。我们还观察到存在一个、两个或三个实平衡点,以及两个平衡点的双稳性。研究结果显示,如果初始AC-Is的数量低于预设水平,AC-Is的群体可以被控制在一个预定的水平内,且选择合适的阈值至关重要。                    
                    
                    Abstract
                        Intermittent androgen-deprivation therapy (IADT) can be beneficial to delay the occurrence of treatment resistance and cancer relapse compared to the standard continuous therapy. To study the effect of IADT in controlling prostate cancer, we developed a Filippov prostate cancer model with a joint threshold function: therapy is implemented once the total population of androgen-dependent cells (AC-Ds) and androgen-independent cells (AC-Is) is greater than the threshold value ET, and it is suspended once the population is less than ET. As the parameters vary, our model undergoes a series of sliding bifurcations, including boundary node, focus, saddle, saddle-node and tangency bifurcations. We also obtained the coexistence of one, two or three real equilibria and the bistability of two equilibria. Our results demonstrate that the population of AC-Is can be contained at a predetermined level if the initial population of AC-Is is less than this level, and we choose a suitable threshold value.