描述间歇性雄激素剥夺疗法在控制前列腺癌中的效果的联合阈值 Filippov 模型。
A joint-threshold Filippov model describing the effect of intermittent androgen-deprivation therapy in controlling prostate cancer.
发表日期:2024 Sep 20
作者:
Aili Wang, Rong Yan, Haixia Li, Xiaodan Sun, Weike Zhou, Stacey R Smith
来源:
MATHEMATICAL BIOSCIENCES
摘要:
与标准连续治疗相比,间歇性雄激素剥夺疗法(IADT)有利于延缓治疗耐药和癌症复发的发生。为了研究 IADT 在控制前列腺癌中的效果,我们开发了具有联合阈值函数的 Filippov 前列腺癌模型:一旦雄激素依赖性细胞 (AC-Ds) 和雄激素非依赖性细胞 (AC-Is) 的总数达到)大于阈值ET,一旦人口小于ET则暂停。随着参数的变化,我们的模型经历了一系列滑动分岔,包括边界节点、焦点、鞍点、鞍节点和相切分岔。我们还得到了一个、两个或三个实平衡点的共存以及两个平衡点的双稳定性。我们的结果表明,如果 AC-Is 的初始数量小于该水平,则 AC-Is 的数量可以控制在预定水平,并且我们选择合适的阈值。版权所有 © 2024 作者。由爱思唯尔公司出版。保留所有权利。
Intermittent androgen-deprivation therapy (IADT) can be beneficial to delay the occurrence of treatment resistance and cancer relapse compared to the standard continuous therapy. To study the effect of IADT in controlling prostate cancer, we developed a Filippov prostate cancer model with a joint threshold function: therapy is implemented once the total population of androgen-dependent cells (AC-Ds) and androgen-independent cells (AC-Is) is greater than the threshold value ET, and it is suspended once the population is less than ET. As the parameters vary, our model undergoes a series of sliding bifurcations, including boundary node, focus, saddle, saddle-node and tangency bifurcations. We also obtained the coexistence of one, two or three real equilibria and the bistability of two equilibria. Our results demonstrate that the population of AC-Is can be contained at a predetermined level if the initial population of AC-Is is less than this level, and we choose a suitable threshold value.Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.