哨兵淋巴结阳性ERBB2阴性乳腺癌患者的高淋巴结负担的预测
Prediction of High Nodal Burden in Patients With Sentinel Node-Positive Luminal ERBB2-Negative Breast Cancer
影响因子:14.90000
分区:医学1区 Top / 外科1区
发表日期:2024 Dec 01
作者:
Ida Skarping, Pär-Ola Bendahl, Robert Szulkin, Sara Alkner, Yvette Andersson, Leif Bergkvist, Peer Christiansen, Tove Filtenborg Tvedskov, Jan Frisell, Oreste D Gentilini, Michalis Kontos, Thorsten Kühn, Dan Lundstedt, Birgitte Vrou Offersen, Roger Olofsson Bagge, Toralf Reimer, Malin Sund, Lisa Rydén, Jana de Boniface
摘要
在临床淋巴结阴性(CN0)乳腺癌和1或2个哨兵淋巴结(SLN)宏观变体的患者中,省略完成腋窝淋巴结清除术(CALND)是标准的。高节点负担(≥4腋结节转移)是对腔内乳腺癌的加强治疗的指示。因此,放弃CALND可能会导致不足。为了开发一个预测模型,用于腔内ERBB2阴性乳腺癌(所有组织学类型和分别组织学类型和小叶乳腺癌)中的高节点负担,而无需CALND。前瞻性前哨性乳腺癌。 2021年12月,在5个欧洲国家 /地区的CN0 T1-T3乳腺癌患者中,1或2个SLN大量变体。该队列被随机分为训练(80%)和测试集(20%),并具有相同比例的高节点负担。通过在完整的Luminal ERBB2阴性队列和小叶乳腺癌亚组中的多变量逻辑回归中开发了预测模型。构建了命名图。本诊断/预后研究提出了对Senomac试验预先指定的二级分析的结果。在此,仅选择分配给CALND的Luminal ERBB2阴性肿瘤的患者。本文的数据分析于2023年6月至2024年4月进行。高节点负担的预测者。高结节负担定义为≥4腋结节转移。评估了有关歧视和校准的腔内预测模型。1010名患者(中位数[范围]年龄,61 [34-90]年; 1006 [99.6%]女性和4个[0.4%]男性),138(13.7%)的结节负担很高,有212个(21.0%)患有胸骨乳腺癌。训练集(n = 804)中的模型包括SLN宏观变体的数量,SLN微型转移的存在,SLN比率,SLN囊外扩展的存在和肿瘤大小(不包括在小叶亚组中)。在测试集(n = 201)中进行验证后,接收器操作特征曲线(AUC)下的面积为0.74(95%CI,0.62-0.85),校准令人满意。在灵敏度阈值≥80%的情况下,除5名低风险患者外,所有均未正确分类,对应于94%的负预测值。小叶亚组的预测模型达到了0.74(95%CI,0.66-0.83)。预测模型和命名图可能会促进全身治疗决策,而无需使患者暴露于CALND引起的ARM发病风险。需要外部验证。ClinicalTrials.gov标识符:NCT02240472。
Abstract
In patients with clinically node-negative (cN0) breast cancer and 1 or 2 sentinel lymph node (SLN) macrometastases, omitting completion axillary lymph node dissection (CALND) is standard. High nodal burden (≥4 axillary nodal metastases) is an indication for intensified treatment in luminal breast cancer; hence, abstaining from CALND may result in undertreatment.To develop a prediction model for high nodal burden in luminal ERBB2-negative breast cancer (all histologic types and lobular breast cancer separately) without CALND.The prospective Sentinel Node Biopsy in Breast Cancer: Omission of Axillary Clearance After Macrometastases (SENOMAC) trial randomized patients 1:1 to CALND or its omission from January 2015 to December 2021 among adult patients with cN0 T1-T3 breast cancer and 1 or 2 SLN macrometastases across 5 European countries. The cohort was randomly split into training (80%) and test (20%) sets, with equal proportions of high nodal burden. Prediction models were developed by multivariable logistic regression in the complete luminal ERBB2-negative cohort and a lobular breast cancer subgroup. Nomograms were constructed. The present diagnostic/prognostic study presents the results of a prespecified secondary analysis of the SENOMAC trial. Herein, only patients with luminal ERBB2-negative tumors assigned to CALND were selected. Data analysis for this article took place from June 2023 to April 2024.Predictors of high nodal burden.High nodal burden was defined as ≥4 axillary nodal metastases. The luminal prediction model was evaluated regarding discrimination and calibration.Of 1010 patients (median [range] age, 61 [34-90] years; 1006 [99.6%] female and 4 [0.4%] male), 138 (13.7%) had a high nodal burden and 212 (21.0%) had lobular breast cancer. The model in the training set (n = 804) included number of SLN macrometastases, presence of SLN micrometastases, SLN ratio, presence of SLN extracapsular extension, and tumor size (not included in lobular subgroup). Upon validation in the test set (n = 201), the area under the receiver operating characteristic curve (AUC) was 0.74 (95% CI, 0.62-0.85) and the calibration was satisfactory. At a sensitivity threshold of ≥80%, all but 5 low-risk patients were correctly classified corresponding to a negative predictive value of 94%. The prediction model for the lobular subgroup reached an AUC of 0.74 (95% CI, 0.66-0.83).The predictive models and nomograms may facilitate systemic treatment decisions without exposing patients to the risk of arm morbidity due to CALND. External validation is needed.ClinicalTrials.gov Identifier: NCT02240472.